Skip to main content

Amyloid fibril-supported Pd nanoparticles as electrocatalyst for hydrogen peroxide reduction


Palladium nanoparticles (Pd NPs) were fabricated by using insulin amyloid fibrils (INSAFs) as biotemplates. Atomic force microscopy measurements showed that ultra-small Pd NPs were well adsorbed and dispersed on surfaces of INSAFs. X-ray photoelectron spectroscopy confirmed the partial reduction of Pd ion into metallic Pd(0) probably due to the presence of Cys groups on surface of the insulin fibrils. The electrochemical performance of Pd/INSAFs to reduction of H2O2 was further evaluated by cyclic voltammetry. The remarkably high electrocatalytic activity, low detection limitation and excellent stability make the Pd/INSAFs a promising bio-nanoelectrocatalyst.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    C. Koenigsmann, W.P. Zhou, R.R. Adzic et al., Size-dependent enhancement of electrocatalytic performance in relatively defect-free, processed ultrathin platinum nanowires. Nano Lett. 10, 2806–2811 (2010). doi:10.1021/nl100718k

    Article  Google Scholar 

  2. 2.

    C. Li, S. Takaaki, Y. Yusuke, Electrochemical synthesis of one-dimensional mesoporous Pt nanorods using the assembly of surfactant micelles in confined space. Angew. Chem. Int. Ed. 52, 8050–8053 (2013). doi:10.1002/anie.201303035

    Article  Google Scholar 

  3. 3.

    Q.L. Wu, B. Song, Interaction of Al-induced peptide backbone ring structure with the sidechains of His, Phe, Trp and Tyr. Nucl. Sci. Tech. 26, 040504 (2015). doi:10.13538/j.1001-8042/nst.26.040504

    MathSciNet  Google Scholar 

  4. 4.

    J.D. Maeseneer, D. Egilman, W.P. Burdick et al., Enhanced electrocatalytic performance of processed, ultrathin, supported Pd–Pt core-shell nanowire catalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 133, 9783–9795 (2011). doi:10.1021/ja111130t

    Article  Google Scholar 

  5. 5.

    H. Huang, D. Sun, X. Wang, PtCo alloy nanoparticles supported on graphene nanosheets with high performance for methanol oxidation. Chin. Sci. Bull. 57, 3071–3079 (2012). doi:10.1007/s11434-012-5327-4

    Article  Google Scholar 

  6. 6.

    M. Homma, S.J. Kim, Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes. J. Mater. Chem. 14, 908–913 (2004). doi:10.1039/b308124a

    Article  Google Scholar 

  7. 7.

    E. Antolini, Palladium in fuel cell catalysis. Energy Environ. Sci. 2, 915–931 (2009). doi:10.1039/b820837a

    Article  Google Scholar 

  8. 8.

    N. Miyaura, A. Suzuki, Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 95, 2457–2483 (1995). doi:10.1021/cr00039a007

    Article  Google Scholar 

  9. 9.

    Y. Lin, X. Cui, X. Ye, Electrocatalytic reactivity for oxygen reduction of palladium-modified carbon nanotubes synthesized in supercritical fluid. Electrochem. Commun. 7, 267–274 (2005). doi:10.1016/j.elecom.2005.01.007

    Article  Google Scholar 

  10. 10.

    R. Kannan, A.R. Kim, D.J. Yoo, Synthesis, characterization and electrocatalytic studies of palladium–manganese oxyhydroxide nanocomposite towards direct ethylene glycol fuel cell. Chin. Sci. Bull. 59, 3413–3419 (2014). doi:10.1007/s11434-014-0459-3

    Article  Google Scholar 

  11. 11.

    H. Erikson, A. Sarapuu, N. Alexeyeva et al., Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions. Electrochim. Acta 59, 329–335 (2012). doi:10.1016/j.electacta.2011.10.074

    Article  Google Scholar 

  12. 12.

    L. Zhang, K. Lee, J. Zhang, Effect of synthetic reducing agents on morphology and ORR activity of carbon-supported nano-Pd–Co alloy electrocatalysts. Electrochim. Acta 52, 7964–7971 (2007). doi:10.1016/j.electacta.2007.06.056

    Article  Google Scholar 

  13. 13.

    V. Mazumder, S. Sun, Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J. Am. Chem. Soc. 131, 4588–4589 (2009). doi:10.1021/ja9004915

    Article  Google Scholar 

  14. 14.

    J. Yang, Y. Xi, R. Wang et al., Synergistic effect of tungsten carbide and palladium on graphene for promoted ethanol electrooxidation. ACS Appl. Mater. Interfaces 5, 6571–6579 (2013). doi:10.1021/am401216s

    Article  Google Scholar 

  15. 15.

    B. Yoon, C.M. Wai, Microemulsion-templated synthesis of carbon nanotube-supported Pd and Rh nanoparticles for catalytic applications. J. Am. Chem. Soc. 127, 17174–17175 (2005). doi:10.1021/ja055530f

    Article  Google Scholar 

  16. 16.

    X.L. Li, Y.Q. Liu, L. Fu et al., Efficient synthesis of carbon nanotube–nanoparticle hybrids. Adv. Funct. Mater. 16, 2431–2437 (2006). doi:10.1002/adfm.200600339

    Article  Google Scholar 

  17. 17.

    K. Nguyen, M. Monteverde, A. Filoramo et al., Synthesis of thin and highly conductive DNA-based palladium nanowires. Adv. Mater. 20, 1099–1104 (2008). doi:10.1002/adma.200701803

    Article  Google Scholar 

  18. 18.

    Y.S. Nam, A.P. Magyar, D. Lee et al., Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation. Nat. Nanotech. 5, 340–344 (2010). doi:10.1038/NNANO.2010.57

    Article  Google Scholar 

  19. 19.

    K.N. Avery, J.E. Schaak, R.E. Schaak, M13 bacteriophage as a biological scaffold for magnetically-recoverable metal nanowire catalysts: combining specific and nonspecific interactions to design multifunctional nanocomposites. Chem. Mater. 21, 2176–2178 (2009). doi:10.1021/cm900869u

    Article  Google Scholar 

  20. 20.

    J.H. Hou, Q.G. Du, R.B. Zhong et al., Temperature manipulating peptide self-assembly in water nanofilm. Nucl. Sci. Tech. 25, 060502 (2014). doi:10.13538/j.1001-8042/nst.25.060502

    Google Scholar 

  21. 21.

    L. Zhang, N. Li, F. Gao et al., Insulin amyloid fibrils: an excellent platform for controlled synthesis of ultrathin superlong platinum nanowires with high electrocatalytic activity. J. Am. Chem. Soc. 134, 11326–11329 (2012). doi:10.1021/ja302959e

    Article  Google Scholar 

  22. 22.

    X. Zhou, L. Zheng, R. Li et al., Biotemplated fabrication of size controlled palladium nanoparticle chains. J. Mater. Chem. 22, 8862–8867 (2012). doi:10.1039/c2jm16411f

    Article  Google Scholar 

  23. 23.

    X. Zhou, Y. Wei, X. Zhao et al., Palladium nanoparticles supported by amyloid fibrils: from size controllable synthesis to extremely high catalytic performance. Colloids Surf. A 482, 416–421 (2015). doi:10.1016/j.colsurfa.2015.07.007

    Article  Google Scholar 

  24. 24.

    A.F. Lee, J.N. Naughton, Z. Liu et al., High-pressure XPS of crotyl alcohol selective oxidation over metallic and oxidized Pd (111). ACS Catal. 2, 2235–2241 (2012). doi:10.1021/cs300450y

    Article  Google Scholar 

  25. 25.

    X. Bian, K. Guo, L. Liao et al., Nanocomposites of palladium nanoparticle-loaded mesoporous carbon nanospheres for the electrochemical determination of hydrogen peroxide. Talanta 99, 256–261 (2012). doi:10.1016/j.talanta.2012.05.048

    Article  Google Scholar 

  26. 26.

    K.C. Poon, D.C. Dan, T.D. Vo et al., Newly developed stepwise electroless deposition enables a remarkably facile synthesis of highly active and stable amorphous Pd nanoparticle electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 136, 5217–5220 (2014). doi:10.1021/ja500275r

    Article  Google Scholar 

  27. 27.

    D. Kurouski, T. Deckert-Gaudig, V. Deckert et al., Surface characterization of insulin protofilaments and fibril polymorphs using tip-enhanced Raman spectroscopy (TERS). Biophys. J. 106, 263–271 (2014). doi:10.1016/j.bpj.2013.10.040

    Article  Google Scholar 

  28. 28.

    S.Y. Lee, J.S. Lim, M.T. Harris, Synthesis and application of virus-based hybrid nanomaterials. Biotechnol. Bioeng. 109, 16–30 (2012). doi:10.1002/bit.23328

    Article  Google Scholar 

  29. 29.

    C. Yang, C.H. Choi, C.S. Lee et al., A facile synthesis–fabrication strategy for integration of catalytically active viral-palladium nanostructures into polymeric hydrogel microparticles via replica molding. ACS Nano 7, 5032–5044 (2013). doi:10.1021/nn4005582

    Article  Google Scholar 

  30. 30.

    J. Huang, D. Wang, H. Hou et al., Electrospun palladium nanoparticle-loaded carbon nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH. Adv. Funct. Mater. 18, 441–448 (2008). doi:10.1002/adfm.200700729

    Article  Google Scholar 

  31. 31.

    W. Hong, J. Wang, E. Wang, Facile synthesis of highly active PdAu nanowire networks as self-supported electrocatalyst for ethanol electrooxidation. ACS Appl. Mater. Interfaces. 6, 9481–9487 (2014). doi:10.1021/am501859k

    Article  Google Scholar 

  32. 32.

    M.S. Ahmed, S. Jeon, Synthesis and electrocatalytic activity evaluation of nanoflower shaped Ni–Pd on alcohol oxidation reaction. J. Electrochem. Soc. 161, F1300–F1306 (2014). doi:10.1149/2.1041412jes

    Article  Google Scholar 

  33. 33.

    F. Yang, S.C. Kung, M. Cheng et al., Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires. ACS Nano 2010(4), 5233–5244 (2010). doi:10.1021/nn101475c

    Article  Google Scholar 

  34. 34.

    Y. Liu, G. Sun, C. Jiang et al., Highly sensitive detection of hydrogen peroxide at a carbon nanotube fiber microelectrode coated with palladium nanoparticles. Microchim. Acta 181, 63–70 (2013). doi:10.1007/s00604-013-1066-8

    Article  Google Scholar 

  35. 35.

    F. Jiang, R. Yue, Y. Du et al., A one-pot ‘green’ synthesis of Pd-decorated PEDOT nanospheres for nonenzymatic hydrogen peroxide sensing. Biosens. Bioelectron. 44, 127–131 (2013). doi:10.1016/j.bios.2013.01.003

    Article  Google Scholar 

  36. 36.

    S. Momeni, I. Nabipour, A simple green synthesis of palladium nanoparticles with Sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Appl. Biochem. Biotechnol. 176, 1937–1949 (2015). doi:10.1007/s12010-015-1690-3

    Article  Google Scholar 

  37. 37.

    S. Chakraborty, C.R. Retna, Electrocatalytic performance of carbon nanotube-supported palladium particles in the oxidation of formic acid and the reduction of oxygen. Carbon 48, 3242–3249 (2010). doi:10.1016/j.carbon.2010.05.014

    Article  Google Scholar 

  38. 38.

    S. Kumar, S. Zou, Electrooxidation of carbon monoxide on gold nanoparticle ensemble electrodes: effects of particle coverage. J. Phys. Chem. B. 109, 15707–15713 (2005). doi:10.1021/jp051981a

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Xing-Fei Zhou.

Additional information

This work was supported by the Natural Nature Science Foundation of China (No. 11474173), the Natural Science Foundation of Zhejiang province (Nos. Y14A040006 and LQ14F040002), Ningbo Natural Science Foundation (Nos. 2014A610202 and 2014A610149) and the K. C. Wong Magna Fund of Ningbo University.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kong, LX., Wang, LJ., Su, LL. et al. Amyloid fibril-supported Pd nanoparticles as electrocatalyst for hydrogen peroxide reduction. NUCL SCI TECH 27, 97 (2016).

Download citation


  • Palladium nanoparticles
  • Amyloid fibrils
  • Cyclic voltammetry
  • Nanoelectrocatalyst
  • Hydrogen peroxide