Skip to main content
Log in

Gate/Geant4-based Monte Carlo simulation for calculation of dose distribution of 400 MeV/u carbon ion beam and fragments in water

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The applications of carbon ion beam in tumor therapy have attracted more attention in recent years. Monte Carlo simulation is an important approach to obtain accurate radiotherapy parameters. In this work, a 400 MeV/u carbon ion beam incident on water phantom was simulated with Gate/Geant4 tools. In methods, the authors set up a carbon ion beam source according to the experiment parameters of Haettner, defined the geometries and materials, set up the physics processes, and designed the means of information collection. In results, the authors obtained the longitudinal dose distribution, the lateral dose distribution, and the relative uncertainty of dose. The dose contributions of all kinds of fragments were calculated detailedly and compared with the Francis results. This work is helpful for people’s understanding of the dose distributions produced by carbon ion beam and fragments in water. The simulation method is also significative for radiotherapy treatment planning of carbon ion beam, and it is easy to extend. For obtaining a special result, we may change the particle energy, particle type, target material, target geometry, physics process, detector, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.T. Bache, T. Juang, M.D. Belley, Investigating the accuracy of microstereotactic-body-radiotherapy utilizing anatomically accurate 3D printed rodent-morphic dosimeters. Med. Phys. 42, 846–855 (2015). doi:10.1118/1.4905489

    Article  Google Scholar 

  2. J. Wang, X. Pei, R.F. Cao et al., A multiphase direct aperture optimization for inverse planning in radiotherapy. Nucl. Sci. Tech. 26, 010502 (2015). doi:10.13538/j.1001-8042/nst.26.010502

    Google Scholar 

  3. M.C. Frese, V.K. Yu, R.D. Stewart et al., A mechanism-based approach to predict the relative biological effectiveness of protons and carbon ions in radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 83, 442–450 (2012). doi:10.1016/j.ijrobp.2011.06.1983

    Article  Google Scholar 

  4. S. Agostinelli, J. Allison, K. Amako et al., GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250–303 (2003). doi:10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  5. N. Zahra, T. Frisson, L. Grevillot et al., Influence of Geant4 parameters on dose distribution and computation time for carbon ion therapy simulation. Phys. Med. 26, 202–208 (2010). doi:10.1016/j.ejmp.2009.12.001

    Article  Google Scholar 

  6. Q.I.N. Xue, Z.H.O.U. Rong, H.A.N. Ji-Feng et al., GEANT4 simulation of the characteristic gamma-ray spectrum of TNT under soil induced by DT neutrons. Nucl. Sci. Tech. 26, 010501 (2015). doi:10.13538/j.1001-8042/nst.26.010501

    Google Scholar 

  7. T.T. Böhlen, F. Cerutti, M. Dosanjh et al., Benchmarking nuclear models of FLUKA and GEANT4 for carbon ion therapy. Phys. Med. Biol. 55, 5833–5847 (2010). doi:10.1088/0031-9155/55/19/014

    Article  Google Scholar 

  8. I. Pshenichnov, I. Mishustin, W. Greiner, Distributions of positron-emitting nuclei in proton and carbon-ion therapy studied with GEANT4. Phys. Med. Biol. 51, 6099–6112 (2006). doi:10.1088/0031-9155/51/23/011

    Article  Google Scholar 

  9. M.D. Napoli, F. Romano, D. D’Urso et al., Nuclear reaction measurements on tissue-equivalent materials and GEANT4 Monte Carlo simulations for hadrontherapy. Phys. Med. Biol. 59, 7643–7652 (2014). doi:10.1088/0031-9155/59/24/7643

    Article  Google Scholar 

  10. I. Pshenichnov, I. Mishustin, W. Greiner, Comparative study of depth-dose distributions for beams of light and heavy nuclei in tissue-like media. Nucl. Instrum. Methods Phys. Res. B 266, 1094–1098 (2008). doi:10.1016/j.nimb.2008.02.025

    Article  Google Scholar 

  11. Y.-P. Liu, X.-B. Tang, Z.-H. Xu et al., Energy deposition, parameter optimization, and performance analysis of space radiation voltaic batteries. Nucl. Sci. Tech. 25, S010402 (2014). doi:10.13538/j.1001-8042/nst.25.S010402

    Google Scholar 

  12. G. Santin, D. Strul, D. Lazaro et al., GATE: a Geant4-based simulation platform for PET, SPECT integrating movement and time management. IEEE Trans. Nucl. Sci. 50, 1516–1521 (2003). doi:10.1109/TNS.2003.817974

    Article  Google Scholar 

  13. D. Sarrut, M. Bardiès, N. Boussion et al., A review of the use and potential of the GATE Monte Carlo code for radiation therapy and dosimetry applications. Med. Phys. 41, 1–14 (2014). doi:10.1118/1.4871617

    Google Scholar 

  14. S. Jan, D. Benoit, E. Becheva et al., GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys. Med. Biol. 56, 881–901 (2011). doi:10.1088/0031-9155/56/4/001

    Article  Google Scholar 

  15. C.O. Thiam, V. Breton, D. Donnarieix et al., Validation of a dose deposited by low-energy photons using GATE/GEANT4. Phys. Med. Biol. 53, 3039–3056 (2008). doi:10.1088/0031-9155/53/11/019

    Article  Google Scholar 

  16. L. Grevillot, T. Frisson, D. Maneval et al., Simulation of a 6 MV Elekta Precise Linac photon beam using GATE/GEANT4. Phys. Med. Biol. 56, 903–918 (2011). doi:10.1088/0031-9155/56/4/002

    Article  Google Scholar 

  17. L. Grevillot, D. Bertrand, F. Dessy et al., GATE as a GEANT4-based Monte Carlo platform for the evaluation of proton pencil beam scanning treatment plans. Phys. Med. Biol. 57, 4223–4244 (2012). doi:10.1088/0031-9155/57/13/4223

    Article  Google Scholar 

  18. K. Kurosu, M. Takashina, M. Koizumi et al., Optimization of GATE and PHITS Monte Carlo code parameters for uniform scanning proton beam based on simulation with FLUKA general-purpose code. Nucl. Instrum. Methods Phys. Res. B 336, 45–54 (2014). doi:10.1016/j.nimb.2014.06.009

    Article  Google Scholar 

  19. L. Grevillot, T. Frisson, N. Zahra et al., Optimization of GEANT4 settings for Proton Pencil Beam Scanning simulations using GATE. Nucl. Instrum. Methods Phys. Res. B 268, 3295–3305 (2010). doi:10.1016/j.nimb.2010.07.011

    Article  Google Scholar 

  20. E. Haettner, H. Iwase, M. Krämer et al., Experimental study of nuclear fragmentation of 200 and 400 MeV/u 12C ions in water for applications in particle therapy. Phys. Med. Biol. 58, 8265–8279 (2013). doi:10.1088/0031-9155/58/23/8265

    Article  Google Scholar 

  21. N. Matsufuji, M. Komori, H. Sasaki et al., Spatial fragment distribution from a therapeutic pencil-like carbon beam in water. Phys. Med. Biol. 50, 3393–3403 (2005). doi:10.1088/0031-9155/50/14/014

    Article  Google Scholar 

  22. Y. Kusano, T. Kanai, Y. Kase et al., Dose contributions from large-angle scattered particles in therapeutic carbon beams. Med. Phys. 34, 193–198 (2007). doi:10.1118/1.2402328

    Article  Google Scholar 

  23. B. Braunn, M. Labalme, G. Ban et al., Nuclear reaction measurements of 95 MeV/u 12C interactions on PMMA for hadrontherapy. Nucl. Instrum. Methods Phys. Res. B 269, 2676–2684 (2011). doi:10.1016/j.nimb.2011.08.010

    Article  Google Scholar 

  24. Z. Francis, E. Seif, S. Incerti et al., Carbon ion fragmentation effects on the nanometric level behind the Bragg peak depth. Phys. Med. Biol. 59, 7691–7702 (2014). doi:10.1088/0031-9155/59/24/7691

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Jun Zhao.

Additional information

This work was supported by the National Natural Science Foundation of China (No. H1809).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, HF., Zhang, B. & Zhao, SJ. Gate/Geant4-based Monte Carlo simulation for calculation of dose distribution of 400 MeV/u carbon ion beam and fragments in water. NUCL SCI TECH 27, 83 (2016). https://doi.org/10.1007/s41365-016-0097-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0097-3

Keywords

Navigation