Skip to main content

Analytical exponential model for stochastic point kinetics equations via eigenvalues and eigenvectors

Abstract

The stochastic point kinetics equations with a multi-group of delayed neutrons, which are the system of a couple of stiff stochastic differential equations, are presented. The analytical exponential model is used to solve the stochastic point kinetics equations in the dynamical system of the nuclear reactor. This method is based on the eigenvalues and corresponding eigenvectors of the coefficient matrix. The analytical exponential model calculates the mean and standard deviations of neutrons and precursor populations for the stochastic point kinetics equations with step, ramp, and sinusoidal reactivities. The results of the analytical exponential model are compared with published methods and the results of the deterministic point kinetics model. This comparison confirms that the analytical exponential model is an efficient method for solving stochastic stiff point kinetics equations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    J.G. Hayes, E.J. Allen, Stochastic point kinetics equations in nuclear reactor dynamics. Ann. Nucl. Energy 32, 572–587 (2005). doi:10.1016/j.anucene.2004.11.009

    Article  Google Scholar 

  2. 2.

    J.G. Hayes, Stochastic point kinetics equations in nuclear reactor dynamics. Thesis, Texas Tech University, 2005. https://repositories.tdl.org/ttu-ir/bitstream/handle/2346/22276/HayesThesis

  3. 3.

    P.N. Ha, J.K. Kim, A stochastic approach to monoenergetic space–time nuclear reactor kinetics. J. Nucl. Sci. Technol. 47, 705–711 (2010). doi:10.1080/18811248.2010.9711646

    Article  Google Scholar 

  4. 4.

    P.N. Ha, J.K. Kim, Further evaluation of a stochastic model applied to monoenergetic space–time nuclear reactor kinetics. Nucl. Eng. Technol. 43, 523–530 (2011). doi:10.5516/NET.2011.43.6.523

    Article  Google Scholar 

  5. 5.

    P. Feng, S. Liu, B. Wei, et al. Simulation and experimental study of a random neutron analyzing system with \(^{252}\)Cf neutron source. Nucl. Sci. Technol. 22: 39–46 (2011). www.j.sinap.ac.cn/nst/CN/Y2011/V22/I1/39

  6. 6.

    S.S. Ray, Numerical simulation of stochastic point kinetic equation in the dynamical system of nuclear reactor. Ann. Nucl. Energy 49, 154–159 (2012). doi:10.1016/j.anucene.2012.05.022

    Article  Google Scholar 

  7. 7.

    S.S. Ray, A. Patra, Numerical solution for stochastic point kinetics equations with sinusoidal reactivity in dynamical system of nuclear reactor. Int. J. Nucl. Energy Sci. Technol. 7, 231–242 (2013). doi:10.1504/IJNEST.2013.052165

    Article  Google Scholar 

  8. 8.

    S.M. Ayyoubzadeh, N. Vosoughi, An alternative stochastic formulation for the point kinetics. Ann. Nucl. Energy 63, 691–695 (2014). doi:10.1016/j.anucene.2013.09.013

    Article  Google Scholar 

  9. 9.

    W.M. Stacey, Nuclear Reactor Physics, 2nd edn. (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007)

    Book  Google Scholar 

  10. 10.

    J.J. Duderstadt, L.J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976)

    Google Scholar 

  11. 11.

    M.M.R. Williams, Random Processes in Nuclear Reactors (Pergamon Press, Oxford, 1974)

    Google Scholar 

  12. 12.

    E.J. Allen, Modeling with Itô Stochastic Differential Equations (Springer, Dordrecht, 2007)

    MATH  Google Scholar 

  13. 13.

    A.E. Aboanber, A.A. Nahla, Generalization of the analytical inversion method for the solution of the point kinetics equations. J. Phys. A Math. Gen. 35, 3245–3263 (2002). doi:10.1088/0305-4470/35/14/307

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    A.E. Aboanber, A.A. Nahla, Solution of the point kinetics equations in the presence of Newtonian temperature feedback by Padé approximations via the analytical inversion method. J. Phys. A Math. Gen. 35, 9609–9627 (2002). doi:10.1088/0305-4470/35/45/309

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    A.A. Nahla, Generalization of the analytical exponential model to solve the point kinetics equations of Be- and \({\text{ D }_{2}\text{ O }}\)-moderated reactors. Nucl. Eng. Des. 238, 2648–2653 (2008). doi:10.1016/j.nucengdes.2008.04.002

    Article  Google Scholar 

  16. 16.

    A.A. Nahla, An efficient technique for the point reactor kinetics equations with Newtonian temperature feedback effects. Ann. Nucl. Energy 38, 2810–2817 (2011). doi:10.1016/j.anucene.2011.08.021

    Article  Google Scholar 

  17. 17.

    H.F. Li, X.L. Shang, W.Z. Chen, An accurate solution of point kinetics equations of one-group delayed neutrons and an extraneous neutron source for step reactivity insertion. Chin. Sci. Bull. 55, 4116–4119 (2010). doi:10.1007/s11434-010-4220-2

    Article  Google Scholar 

  18. 18.

    W.Z. Chen, H. Xiao, H.F. Li et al., Explicit appropriate basis function method for numerical solution of stiff systems. Ann. Nucl. Energy 75, 353–357 (2015). doi:10.1016/j.anucene.2014.08.040

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Nahla.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nahla, A.A., Edress, A.M. Analytical exponential model for stochastic point kinetics equations via eigenvalues and eigenvectors. NUCL SCI TECH 27, 20 (2016). https://doi.org/10.1007/s41365-016-0025-6

Download citation

Keywords

  • Stochastic differential equation
  • Nuclear reactor dynamics
  • Multi-group precursor concentration