Skip to main content
Log in

Formulation of Moringa oleifera nanobiopesticides and their evaluation against Tribolium castaneum and Rhyzopertha dominica

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

The excessive use of synthetic pesticides for pest management is harmful to human health and environment. Plants extract are promising active ingredients to produce safe and ecofriendly biopesticides as an alternative, while their physicochemical properties are a thoughtful issue to generate commercial formulates. Thus, nanotechnology plays an important role to solve this problem. In this study, nanobiopesticides of Moringa oleifera leaves (Moringaceae) were formulated using a polyvinylpyrrolidone stabilizer. The minimum particle size of M. oleifera nanosuspension was 174 nm with polydispersity index and zeta potential values of 0.354 and −13.2 mV, respectively. The morphology of M. oleifera nanobiopesticide was analyzed by scanning electron microscopy which showed spherical to the oval shape particles. The comparative pesticidal efficacy of M. oleifera extract and its nanosuspensions against stored product insects was conducted. The M. oleifera M3 nanosuspension showed significantly (P < 0.05) high insecticidal activity with a mortality rate of 83.00 ± 0.56 and 92.48 ± 3.12% after 72 h against Tribolium castaneum (Coleoptera: Tenebrionidae) and Rhyzopertha dominica (Coleoptera: Bostrichidae), respectively. Conversely, M. oleifera extract exhibited significantly low insecticidal efficacy with a mortality rate of 79.30 ± 2.64 and 81.15 ± 2.97% against Tribolium castaneum and Rhyzopertha dominica, respectively. The prepared nanoformulations showed high pesticidal potential may be suggested as ecofriendly, sustainable, and effective biopesticides against stored product insects.

Graphical abstract

The Moringa oleifera nanobiopesticides showed effective and enhanced pesticidal potential against stored grain insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alao FO, Adebayo T (2015) Comparative efficacy of Tephrosia vogelii and Moringa oleifera against insect pests of watermelon (Citrullus lanatus Thumb). Int Lett Nat Sci 35:71–78

    Google Scholar 

  • Abdulkadir I, Nasir I, Sofowora A, Yahaya F, Ahmad A, Hassan I (2015) Phytochemical screening and antimicrobial activities of ethanolic extracts of Moringa oleifera Lam on isolates of some pathogens. J Appl Pharm 7:2–7. https://doi.org/10.4172/1920-4159.1000203

    Article  Google Scholar 

  • Anjali C, Sharma Y, Mukherjee A, Chandrasekaran N (2012) Neem oil (Azadirachta indica) nanoemulsion: a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci 68:158–163. https://doi.org/10.1002/ps.2233

    Article  CAS  PubMed  Google Scholar 

  • Amsa P, Tamizharasi S, Mohanraj K, Jagadeeswaran M, Sivakumar T (2013a) Formulation development and in-vitro evaluation of nanosuspension loaded with simvastatin. Indo Am J Pharm Res 3:1531–1539

    Google Scholar 

  • Adel M, Atwa W, Hassan M, Salem N, Farghaly D, Ibrahim S (2015) Biological activity and field persistence of Pelargonium graveolens (Geraniales: Geraniaceae) loaded solid lipid nanoparticles (SLNs) on Phthorimaea operculella (Zeller)(PTM)(Lepidoptera: Gelechiidae). Int J Sci Res 4:514–520

    Google Scholar 

  • Aslam S, Jahan N, Khalil-Ur-Rehman, Ali S (2019) Formulation, optimisation and in-vitro, in-vivo evaluation of surfactant stabilised nanosuspension of Ginkgo biloba. J Microencapsul 36:576–590. https://doi.org/10.1080/02652048.2019.1662123

  • Amsa P, Tamizharasi S, Mohanraj KP, Jagadeeswaran M, Sivakumar T (2013b) Formulation development and in-vitro evaluation of nanosuspension loaded with simvastatin. Indo Am J Pharm Res 3:15311539

    Google Scholar 

  • Chowdhary K, Kumar A, Sharma S, Pathak R, Jangir M (2018) Ocimum sp.: source of biorational pesticides. Ind Crops Prod 122:686–701. https://doi.org/10.1016/j.indcrop.2018.05.068

    Article  CAS  Google Scholar 

  • Chogale M, Ghodake V, Patravale V (2016) Performance parameters and characterizations of nanocrystals: a brief review. Pharmaceutics 8:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Choupanian M, Omar D, Basri M, Asib N (2017) Preparation and characterization of neem oil nanoemulsion formulations against Sitophilus oryzae and Tribolium castaneum adults. J Pesticide Sci. D17-032. https://doi.org/10.1584/jpestics.D17-032

  • Campolo O, Cherif A, Ricupero M, Siscaro G, Grissa-Lebdi K, Russo A, Cucci LM, Di Pietro P, Satriano C, Desneux N (2017) Citrus peel essential oil nanoformulations to control the tomato borer, tuta absoluta: chemical properties and biological activity. Sci Rep 7:1–10

    Article  CAS  Google Scholar 

  • De Oliveira CFR, Luz LA, Paiva PMG, Coelho LCBB, Marangoni S, Macedo MLR (2011) Evaluation of seed coagulant Moringa oleifera lectin (cMoL) as a bioinsecticidal tool with potential for the control of insects. Process Biochem 46:498–504. https://doi.org/10.1016/j.procbio.2010.09.025

    Article  CAS  Google Scholar 

  • Dhingra S, Walia S, Kumar J, Singh S, Singh G, Parmar BS (2008) Field efficacy of azadirachtin-a, tetrahydroazadirachtin-a, neemazal® and endosulfan against key pests of okra (abelmoschus esculentus). Pest Manag Sci: Formerly Pesticide Sci 64:1187–1194

    Article  CAS  Google Scholar 

  • Devara RK, Mohammad HUR, Rambabu B, Aukunuru J, Habibuddin M (2015) Preparation, optimization and evaluation of intravenous curcumin nanosuspensions intended to treat liver fibrosis. Turk J Pharm Sci 12:207–220

    Article  CAS  Google Scholar 

  • Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84:99–105. https://doi.org/10.1007/s10340-010-0332-3

    Article  Google Scholar 

  • Ebadollahi A, Ziaee M, Palla F (2020) Essential oils extracted from different species of the Lamiaceae plant family as prospective bioagents against several detrimental pests. Molecules 25:1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebadollahi A (2020) Estragole-rich essential oil of summer savory (Satureja hortensis L.) as an eco-friendly alternative to the synthetic insecticides in management of two stored-products insect pests. Acta Agric Slovenica 115:307–314

    CAS  Google Scholar 

  • Elango G, Bagavan A, Kamaraj C, Abduz Zahir A, Abdul Rahuman A (2009) Oviposition-deterrent, ovicidal, and repellent activities of indigenous plant extracts against Anopheles subpictus Grassi (Diptera: Culicidae). Parasitol Res 105:1567–1576

    Article  CAS  PubMed  Google Scholar 

  • Ferreira PM, Carvalho AF, Farias DF, Cariolano NG, Melo VM, Queiroz MG, Martins A, Machado-Neto JG (2009) Larvicidal activity of the water extract of Moringa oleifera seeds against Aedes aegypti and its toxicity upon laboratory animals. An Acad Bras Ciênc 81:207–216

    Article  PubMed  Google Scholar 

  • González JOW, Gutiérrez MM, Ferrero AA, Band BF (2014) Essential oils nanoformulations for stored-product pest control–characterization and biological properties. Chemosphere 100:130–138. https://doi.org/10.1016/j.chemosphere.2013.11.056

    Article  CAS  Google Scholar 

  • Grijalba EP, Espinel C, Cuartas PE, Chaparro ML, Villamizar LF (2018) Metarhizium rileyi biopesticide to control Spodoptera frugiperda: stability and insecticidal activity under glasshouse conditions. Fungal Biol 122:1069–1076. https://doi.org/10.1016/j.funbio.2018.08.010

    Article  PubMed  Google Scholar 

  • Hazafa A, Jahan N, Zia MA, Rahman K-U, Sagheer M, Naeem M (2022) Evaluation and optimization of nanosuspensions of Chrysanthemum coronarium and Azadirachta indica using response surface methodology for pest management. Chemosphere 292:133411. https://doi.org/10.1016/j.chemosphere.2021.133411

  • Heydarzade A, Valizadegan O, Negahban M, Mehrkhou F (2019) Efficacy of Mentha spicata and Mentha pulegium essential oil nanoformulation on mortality and physiology of Tribolium castaneum (Col.: Tenebrionidae). J Crop Prot 8:501–520

    Google Scholar 

  • Jacques MT, Oliveira JL, Campos EV, Fraceto LF, Ávila DS (2017) Safety assessment of nanopesticides using the roundworm Caenorhabditis elegans. Ecotoxicol Environ Saf 139:245–253. https://doi.org/10.1016/j.ecoenv.2017.01.045

    Article  CAS  PubMed  Google Scholar 

  • Kale P, Pawar V, Shendge S (2021) Recent advances in stored grain pest management: a

  • Keswani B, Mohapatra AG, Mohanty A, Khanna A, Rodrigues JJ, Gupta D, De Albuquerque VHC (2019) Adapting weather conditions based IoT enabled smart irrigation technique in precision agriculture mechanisms. Neural Comput Appl 31:277–292. https://doi.org/10.1007/s00521-018-3737-1

    Article  Google Scholar 

  • Khatem R, Celis R, Hermosín MC (2019) Cationic and anionic clay nanoformulations of imazamox for minimizing environmental risk. Appl Clay Sci 168:106–115. https://doi.org/10.1016/j.clay.2018.10.014

    Article  CAS  Google Scholar 

  • Kim K-H, Kabir E, Jahan SA (2017) Exposure to pesticides and the associated human health effects. Sci Total Environ 575:525–535. https://doi.org/10.1016/j.scitotenv.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  • Khoshraftar Z, Safekordi A, Shamel A, Zaefizadeh M (2020) Evaluation of insecticidal activity of nanoformulation of Melia azedarach (leaf) extract as a safe environmental insecticide. Int J Environ Sci Technol 17:1159–1170. https://doi.org/10.1007/s13762-019-02448-7

    Article  CAS  Google Scholar 

  • Khader SZA, Syed Zameer Ahmed S, Sathyan J, Mahboob MR, Venkatesh P, Ramesh K (2018) A comparative study on larvicidal potential of selected medicinal plants over green synthesized silver nano particles. Egypt J Basic Appl Sci 5:54–62. https://doi.org/10.1016/j.ejbas.2018.01.002

  • Karadag A, Ozcelik B, Huang Q (2014) Quercetin nanosuspensions produced by high-pressure homogenization. J Agric Food Chem 62:1852–1859

    Article  CAS  PubMed  Google Scholar 

  • Koul O (2019) Nanobiopesticides: an introduction, nano-biopesticides today and future perspectives. Elsevier, pp 1–15. https://doi.org/10.1016/B978-0-12-815829-6.00001-2

  • Khoshraftar Z, Safekordi AA, Shamel A, Zaefizadeh M (2019) Synthesis of natural nanopesticides with the origin of Eucalyptus globulus extract for pest control. Green Chem Lett Rev 12:286–298. https://doi.org/10.1080/17518253.2019.1643930

    Article  CAS  Google Scholar 

  • Li X, Yuan H, Zhang C, Chen W, Cheng W, Chen X, Ye X (2016) Preparation and in-vitro/in-vivo evaluation of curcumin nanosuspension with solubility enhancement. J Pharm Pharmacol 68:980–988

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Mai Y, Gu X, Zhao Y, Di X, Ma X, Yang J (2020) A wet-milling method for the preparation of cilnidipine nanosuspension with enhanced dissolution and oral bioavailability. Journal of Drug Delivery Science and Technology 55:101371

    Article  CAS  Google Scholar 

  • Mfarrej MFB, Rara FM (2019) Competitive, sustainable natural pesticides. Acta Ecol Sin 39:145–151. https://doi.org/10.1016/j.chnaes.2018.08.005

    Article  Google Scholar 

  • Manzoor M, Ali H, Muhammad A, Alam I, Khalid SH, Idrees A, Arif M (2015) Potential of Moringa (Moringa oleifera: Moringaceae) as plant growth regulator and bio-pesticide against wheat aphids on wheat crop (Triticum aestivum; Poaceae). J Biopest 8:120

    Article  Google Scholar 

  • Montefuscoli AR, Werdin González JO, Palma SD, Ferrero AA, Fernández Band B (2014) Design and development of aqueous nanoformulations for mosquito control. Parasitol Res 113:793–800. https://doi.org/10.1007/s00436-013-3710-y

    Article  PubMed  Google Scholar 

  • Marsalek R (2014) Particle size and zeta potential of ZnO. APCBEE Proc 9:13–17

    Article  CAS  Google Scholar 

  • Mishra B, Sahoo J, Dixit PK (2016) Enhanced bioavailability of cinnarizine nanosuspensions by particle size engineering: Optimization and physicochemical investigations. Mater Sci Eng C 63:62–69

    Article  CAS  Google Scholar 

  • Negahban M, Moharramipour S, Zandi M, Hashemi SA, Ziayee F (2012) Nano-insecticidal activity of essential oil from Cuminum cyminum on Tribolium castaneum. In: Proceedings of 9th international confernce on controlled atmosphere and fumigation in stored products, Antalya, Turkey, p 19

  • Prasantha BR, Reichmuth C, Adler C, Felgentreu D (2015) Lipid adsorption of diatomaceous earths and increased water permeability in the epicuticle layer of the cowpea weevil Callosobruchus maculatus (F.) and the bean weevil Acanthoscelides obtectus (Say)(Chrysomelidae). J Stored Prod Res 64:36–41. https://doi.org/10.1016/j.jspr.2015.08.003

    Article  Google Scholar 

  • Ponsankar A, Vasantha-Srinivasan P, Thanigaivel A, Edwin E-S, Selin-Rani S, Chellappandian M, Senthil-Nathan S, Kalaivani K, Mahendiran A, Hunter WB (2018) Response of Spodoptera litura Fab. (Lepidoptera: Noctuidae) larvae to Citrullus colocynthis L. (Cucurbitales: Cucurbitaceae) chemical constituents: larval tolerance, food utilization and detoxifying enzyme activities. Physiol Mol Plant Pathol 101:16–28. https://doi.org/10.1016/j.pmpp.2016.12.006

    Article  CAS  Google Scholar 

  • Panneerselvam C, Murugan K, Kovendan K, Kumar PM, Ponarulselvam S, Amerasan D, Subramaniam J, Hwang JS (2013) Larvicidal efficacy of Catharanthus roseus Linn. (Family: Apocynaceae) leaf extract and bacterial insecticide Bacillus thuringiensis against Anopheles stephensi Liston. Asian Pac J Trop Med 6:847–853

    Article  PubMed  Google Scholar 

  • Prakash B, Kujur A, Yadav A, Kumar A, Singh PP, Dubey N (2018) Nanoencapsulation: an efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control 89:1–11. https://doi.org/10.1016/j.foodcont.2018.01.018

    Article  CAS  Google Scholar 

  • Paz C, Burgos V, Iturra A, Rebolledo R, Ortiz L, Baggio R, Becerra J, Cespedes-Acuña CL (2018) Assessment of insecticidal responses of extracts and compounds of Drimys winteri, Lobelia tupa, Viola portalesia and Vestia foetida against the granary weevil Sitophilus granarius. Ind Crops Prod 122:232–238. https://doi.org/10.1016/j.indcrop.2018.06.009

    Article  CAS  Google Scholar 

  • Santos MS, Zanardi OZ, Pauli KS, Forim MR, Yamamoto PT, Vendramim JD (2015) Toxicity of an azadirachtin-based biopesticide on Diaphorina citri Kuwayama (Hemiptera: Liviidae) and its ectoparasitoid Tamarixia radiata (Waterston)(Hymenoptera: Eulophidae). Crop Prot 74:116–123. https://doi.org/10.1016/j.cropro.2015.04.015

    Article  CAS  Google Scholar 

  • Sugumar S, Clarke S, Nirmala M, Tyagi B, Mukherjee A, Chandrasekaran N (2014) Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bull Entomol Res 104:393–402. https://doi.org/10.1017/S0007485313000710

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Kaur A (2018) Control of insect pests in crop plants and stored food grains using plant saponins: a review. Lwt 87:93–101. https://doi.org/10.1016/j.lwt.2017.08.077

    Article  CAS  Google Scholar 

  • Tesfaye B, Tefera T (2017) Extraction of essential oil from neem seed by using soxhlet extraction methods. Int J Adv Eng Manag Sci 3:239870. https://doi.org/10.24001/ijaems.3.6.5

    Article  Google Scholar 

  • Tavares WR, Barreto MDC, Seca AM (2021) Aqueous and ethanolic plant extracts as bio-insecticides: establishing a bridge between raw scientific data and practical reality. Plants 10:920

  • Ural N (2021) The signifificance of scanning electron microscopy (SEM) analysis on the microstructure of improved clay: an overview. Open Geosci 13:197–218. https://doi.org/10.1515/geo-2020-0145

    Article  Google Scholar 

  • Volpato A, Baretta D, Zortéa T, Campigotto G, Galli GM, Glombowsky P, Santos RC, Quatrin PM, Ourique AF, Baldissera MD (2016) Larvicidal and insecticidal effect of cinnamomum zeylanicum oil (pure and nanostructured) against mealworm (alphitobius diaperinus) and its possible environmental effects. J Asia-Pacific Entomol 19:1159–1165

    Article  Google Scholar 

  • Xia D, Quan P, Piao H, Piao H, Sun S, Yin Y, Cui F (2010) Preparation of stable nitrendipine nanosuspensions using the precipitation-ultrasonication method for enhancement of dissolution and oral bioavailability. Eur J Pharm Sci 40(4):325–334

    Article  CAS  PubMed  Google Scholar 

  • Zoubiri S, Baaliouamer A (2014) Potentiality of plants as source of insecticide principles. J Saudi Chem Soc 18:925–938. https://doi.org/10.1016/j.jscs.2011.11.015

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by Endowment Fund Secretariat University of Agriculture, Faisalabad, Pakistan, Grant No. RD-028-18.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Humaira Iqbal or Nazish Jahan.

Ethics declarations

Conflict of interest

There is no conflict of interest to the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, H., Jahan, N., Ali, S. et al. Formulation of Moringa oleifera nanobiopesticides and their evaluation against Tribolium castaneum and Rhyzopertha dominica. J Plant Dis Prot 131, 133–142 (2024). https://doi.org/10.1007/s41348-023-00802-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-023-00802-z

Keywords

Navigation