Skip to main content
Log in

Antibacterial activity of some plant-derived essential oils against plant pathogenic bacteria

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Essential oils (EOs) are natural products being considered as an alternative to chemicals to control plant pathogenic bacteria (PPB). In the present study, the EOs from Thymus kotschyanus Boiss. & Hohen., Thymus daenensis Celak, Ferulago angulata (Schlecht.) Boiss., Ziziphora clinopodioides Lam., Eucalyptus camaldulensis Dehnh., Echinophora cinerea (Boiss.) Hedge et Lamond., and Trachyspermum ammi L. were obtained and their major constituents were identified by gas chromatography/mass spectrometry (GC–MS). The effect of the EOs against nine species of PPB was evaluated using a disk diffusion assay. T. ammi EO showed the highest antibacterial activity with an inhibition zone of 52.25 and 46.25 mm against Xanthomonas citri pv. citri and Pectobacterium carotovorum subsp. carotovorum, respectively. All EOs exhibited an anti-biofilm formation effect on Erwinia amylovora. Minimum inhibitory concentration and minimum bactericidal concentration of the EOs were determined using the macro-dilution method. Synergistic effects of the EOs were determined using the serial dilution checkerboard method. Transmission electron microscopy revealed that exposure of the PPB to the EOs caused unified cell structure including bacterial aggregation due to the lysis of the cell wall, shrinkage, and deformation. In conclusion, the present results suggest that the EOs might be a promising source of antibacterial activity against PPB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data are contained within the text.

References

  • Adams RP (2004) Identification of essential oil components by Gas chromatography/ quadrupole mass spectroscopy. Allured Publishing Corporation, Carol Stream, p 456

    Google Scholar 

  • Alamshahi L, Nezhad MH, Panjehkeh N, Sabbagh SK, Sadri S (2010) Antibacterial effects of some essential oils on the growth of Pectobacterium carotovorum subsp. carotovorum. In: The 8th International Symposium on Biocontrol and Biotechnology (pp. 170–176)

  • Bakshi M, Kumar A (2021) Copper-based nanoparticles in the soil-plant environment: assessing their applications, interactions, fate and toxicity. Chemosphere 281:130940

    Article  CAS  PubMed  Google Scholar 

  • Balestra GM, Heydari A, Ceccarelli D, Ovidi E, Quattrucci A (2009) Antibacterial effect of Allium sativum and Ficus carica extracts on tomato bacterial pathogens. Crop Prot 28(10):807–811

    Article  Google Scholar 

  • Basavegowda N, Baek KH (2022) Combination strategies of different antimicrobials: an efficient and alternative tool for pathogen inactivation. Biomedicines 10(9):2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassolé IHN, Juliani HR (2012) Essential oils in combination and their antimicrobial properties. Molecules 17:3989–4006

    Article  PubMed  PubMed Central  Google Scholar 

  • Burt SA (2004) Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol 94(3):223–253

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Wang S, Gao Y, Wang Q (2022) Antibacterial activity and mechanism of Polygonum orientale L. essential oil against Pectobacterium carotovorum subsp. carotovorum. Food 11(11):1585

    Article  CAS  Google Scholar 

  • Chaube HS, Singh US (2018) Plant disease management: principles and practices. CRC Press, Boca Raton

    Book  Google Scholar 

  • Cock IE (2009) Antimicrobial activity of Eucalyptus major and Eucalyptus baileyana methanolic extracts. Internet J Microbiol 6(1):31

    Google Scholar 

  • Corona F, Martinez JL (2013) Phenotypic resistance to antibiotics. Antibiotics 2(2):237–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damjanović-Vratnica B, Đakov T, Suković D, Damjanović J (2011) Antimicrobial effect of essential oil isolated from Eucalyptus globulus Labill. from Montenegro. Czech J Food Sci 29(3):277–284

    Article  Google Scholar 

  • Davies NW (1990) Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and carbowax 20M phases. J Chrom 503(1):1–24

    Article  CAS  Google Scholar 

  • de Oliveria MS, de Aguiar Andrade EH (eds) (2022) Essential oils: advances in extractions and biological applications. UK, IntechOpen

    Google Scholar 

  • Ganesan S, Vadivel K, Jayaraman J (eds) (2015) Sustainable crop disease management using natural products. CABI, UK

    Google Scholar 

  • Ghasemi Pirbalouti A, Gholipour Z (2016) Chemical composition, antimicrobial and antioxidant activities of essential oil from Echinophora cinerea harvested at two phenological stages. J Essent Oil Res 28(6):501–511

    Article  CAS  Google Scholar 

  • Ghorbanpour M, Varma A (eds) (2017) Medicinal plants and environmental challenges. Springer, Switzerland

    Google Scholar 

  • Gormez A, Bozari S, Yanmis D, Gulluce M, Sahin F, Agar G (2015) Chemical composition and antibacterial activity of essential oils of two species of Lamiaceae against phytopathogenic bacteria. Pol J Microbiol 64(2):121–127

    Article  PubMed  Google Scholar 

  • Hendry ER, Worthington T, Conway BR, Lambert PA (2009) Antimicrobial efficacy of eucalyptus oil and 1, 8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J Antimicrob Chemother 64(6):1219–1225

    Article  CAS  PubMed  Google Scholar 

  • Hosseini-Nezhad M, Alamshahi L, Panjehkeh N (2012) Biocontrol efficiency of medicinal plants against Pectobacterium carotovorum, Ralstonia solanacearum and Escherichia coli. In Open Conf Proc J 3:46–51

    Article  Google Scholar 

  • Hyldgaard M, Mygind T, Meyer RL (2012) Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 3:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Iacobellis NS, Lo Cantore P, Capasso F, Senatore F (2005) Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils. J Agric Food Chem 53(1):57–61

    Article  CAS  PubMed  Google Scholar 

  • Ishnava KB, Chauhan JB, Barad MB (2013) Anticariogenic and phytochemical evaluation of Eucalyptus globules Labill. Saudi J Biol Sci 20(1):69–74

    Article  CAS  PubMed  Google Scholar 

  • Jadhav MD, Deobhankar KP (2013) Antibacterial activity of medicinal plant’s against Xanthomonas citri. Int J Adv Biotechnol Res 4(3):315–318

    Google Scholar 

  • Jafari A, Ghane M, Arastoo SH (2011) Synergistic antibacterial effects of nano zinc oxide combined with Silver nanocrystales. Afr J Microbiol Res 5(30):5465–5473

    CAS  Google Scholar 

  • Jafarpour M, Golparvar AR (2013) Antibacterial activity of essential oils from Thymus vulgaris, Trachyspermum ammi and Mentha aquatica against Erwinia carotovora in vitro. J Herb Med 4:115–118

    Google Scholar 

  • Jebelli Javan A, Salimiraad S, Khorshidpour B (2019) Combined effect of Trachyspermum ammi essential oil and propolis ethanolic extract on some foodborne pathogenic bacteria. Vet Res Forum 10:235–240

    PubMed  PubMed Central  Google Scholar 

  • Karami-Osboo R, Khodaverdi M, Ali-Akbari F (2010) Antibacterial effect of effective compounds of Satureja hortensis and Thymus vulgaris essential oils against Erwinia amylovora. J Agric Sci Technol 12:35–45

    CAS  Google Scholar 

  • Kokoskova B, Pouvova D, Pavela R (2011) Effectiveness of plant essential oils against Erwinia amylovora, Pseudomonas syringae pv. syringae and associated saprophytic bacteria on/in host plants. J Plant Pathol 93:133–139

    CAS  Google Scholar 

  • Lalancette N, McFarland KA (2007) Phytotoxicity of copper-based bactericides to peach and nectarine. Plant Dis 91(9):1122–1130

    Article  CAS  PubMed  Google Scholar 

  • Li CM, Yu JP (2015) Chemical composition, antimicrobial activity and mechanism of action of essential oil from the leaves of Macleaya cordata (Willd). R Br J Food Saf 35(2):227–236

    Article  CAS  Google Scholar 

  • Lucas GC, Alves E, Pereira RB, Perina FJ, Souza RMD (2012) Antibacterial activity of essential oils on Xanthomonas vesicatoria and control of bacterial spot in tomato. Pesqui Agropecu Bras 47(3):351–359

    Article  Google Scholar 

  • Maag B, Boning D, Voelker B (2000) Assessing the Environmental Impact of Copper CMP. Semicond Int 23(12):101–106

    CAS  Google Scholar 

  • Mahmoudi H, Rahnama K, Arabkhani MA (2010) Antibacterial effect essential oil and extracts of medicinal plant on the causal agents of bacterial canker and leaf spot on the stone fruit tree. J Med Plant Res 4(36):34–42

    Google Scholar 

  • Mangalagiri NP, Panditi SK, Jeevigunta NLL (2021) Antimicrobial activity of essential plant oils and their major components. Heliyon 7(4):e06835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehdizadeh T, Tajik H, Rohani SMR, Oromiehie AR (2012) Antibacterial, antioxidant and optical properties of edible starch-chitosan composite film containing Thymus kotschyanus essential oil. In Veterinary Research Forum (Vol. 3, No. 3, p. 167). Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.

  • Mehrsorosh H, Gavanji S, Larki B, Mohammadi MD, Karbasiun A, Bakhtari A (2014) Essential oil composition and antimicrobial screening of some Iranian herbal plants on Pectobacterium carotovorum. Global Nest J 16:240–250

    Article  Google Scholar 

  • Mihajilov-Krstev T, Radnović D, Kitić D (2010) Antimicrobial activity of Satureja L. essential oils against phytopathogenic bacteria Erwinia amylovora. Biol Nyssana 1:95–98

    Google Scholar 

  • Mishra R, Panda AK, De Mandal S, Shakeel M, Bisht SS, Khan J (2020) Natural anti-biofilm agents: strategies to control biofilm-forming pathogens. Front Microbiol 11:566325

    Article  PubMed  PubMed Central  Google Scholar 

  • Moein MR, Zomorodian K, Pakshir K, Yavari F, Motamedi M, Zarshenas MM (2015) Trachyspermum ammi (L.) sprague: chemical composition of essential oil and antimicrobial activities of respective fractions. J Evid Based Complementary Altern Med 20(1):50–56

    Article  PubMed  Google Scholar 

  • Moghaddam M, Alymanesh MR, Mehdizadeh L, Mirzaei H, Pirbalouti AG (2014) Chemical composition and antibacterial activity of essential oil of Ocimum ciliatum, as a new source of methyl chavicol, against ten phytopathogens. Ind Crops Prod 59:144–148

    Article  CAS  Google Scholar 

  • Moghimi R, Ghaderi L, Rafati H, Aliahmadi A, McClements DJ (2016) Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chem 194:410–415

    Article  CAS  PubMed  Google Scholar 

  • Nasr A, Kermanshahi RK, Nahvi I (2005) Study the hurdle effect of some organic and chemical food preservatives on a resistance of Bacillus cereus spp. Iranian Food Sci Tech Res J 1(2):11–21

    Google Scholar 

  • Ootani MA, Aguiar RW, Ramos ACC, Brito DR, Silva JBD, Cajazeira JP (2013) Use of essential oils in agriculture. J Biotechnol Biodivers 4(2):162–174

    Article  CAS  Google Scholar 

  • O’Toole GA (2011) Microtiter dish biofilm formation assay. JoVE (j vis Exp) 47:e2437–e2437

    Google Scholar 

  • Parvin N, Validi M, Banitalebi M, Mobini G, Ashrafi K, Farrokhi E, Safdari F (2010) Effect of medicinal smokes on some nosocomial infection factors. J Shahrekord Univ Med Sci 12(2):76–83

    Google Scholar 

  • Pawar BT, Pandit BD (2014) Antibacterial activity of leaf extracts of Ocimum sanctum L. against Xanthomonas campestris pv. mangiferaeindicae. Res J Recent Sci 2502:291–294

    Google Scholar 

  • Pillai SK, Moellering RC, Eliopoulos GM (2005) Antimicrobial Combinations. In: Lorian V (ed) Antibiotics in Laboratory Medicine, 5th edn. Lippincott Williams & Wilkins Co., Philadelphia, pp 365–440

    Google Scholar 

  • Pourkhosravani E, Dehghan Nayeri F, Mohammadi Bazargani M (2021) Decoding antibacterial and antibiofilm properties of cinnamon and cardamom essential oils: a combined molecular docking and experimental study. AMB Express 11(1):143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezaei MB, Jaymand K, (eds.) (2006) Essential oils, distillations apparatuses, test methods of essential oils and retention indices in essential oil analysis; Tehran, Iran: Iranian Society of Medicinal Plants

  • Salehi M, Reisnia N, Mehrabian S (2011) Antibacterial effect of external shell of Pistacia vera extract. Islamic Azad Uni Microb Biotech Res J 3(1):53–59

    Google Scholar 

  • Sandoval-Motta S, Aldana M (2016) Adaptive resistance to antibiotics in bacteria: a systems biology perspective. Wiley Interdiscip Rev Syst Biol Med 8(3):253–267

    Article  PubMed  Google Scholar 

  • Sauer AV, Santos EM, Gonçalves-Zuliani AM, Nocchi PT, Nunes WM, Bonato CM (2015) Bacteriostatic and bactericidal activity in vitro of different essential oils as alternative treatments to control Xanthomonas citri subsp. citri. Acta Hortic 1065:931–936

    Article  Google Scholar 

  • Semeniuc CA, Pop CR, Rotar AM (2017) Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria. J Food Drug Anal 25:403–408

    Article  CAS  PubMed  Google Scholar 

  • Shahbazi Y (2015) Chemical composition and in vitro antibacterial effect of Ziziphora clinopodioides essential oil. Pharm Sci 21(2):51–56

    Article  Google Scholar 

  • Sharma A, Abrahamian P, Carvalho R, Choudhary M, Paret ML, Vallad GE, Jones JB (2022) Future of bacterial disease management in crop production. Annu Rev Phytopathol 60:259–282

    Article  PubMed  Google Scholar 

  • Singh RS (2017) Introduction to principles of plant pathology, 5th edn. Oxford and IBH Publishing, New Delhi, p 406

    Google Scholar 

  • Sliti S, Ayadi S, Kachouri F, Khouja MA, Abderrabba M, Bouzouita N (2015) Leaf essential oils chemical composition, antibacterial and antioxidant activities of Eucalyptus camaldulensis and E. rudis from Korbous (Tunisia). J Matter Environ Sci 6(3):743–748

    CAS  Google Scholar 

  • Stockwell VO, Duffy B (2012) Use of antibiotics in plant agriculture. Rev Sci Tech 31(1):199–210

    Article  CAS  PubMed  Google Scholar 

  • Sundin GW, Wang N (2018) Antibiotic resistance in plant-pathogenic bacteria. Annu Rev Phytopathol 56:161–180

    Article  CAS  PubMed  Google Scholar 

  • Swamy MK (ed) (2020) Plant-derived bioactives: production, properties and therapeutic applications. Springer Nature, Singapore

    Google Scholar 

  • Taran M, Ghasempour HR, Shirinpour E (2010) Antimicrobial activity of essential oils of Ferulago angulata subsp. carduchorum. Jundishapur J Microbiol 3(1):10–14

    Google Scholar 

  • Teng Y, Yang Q, Yu Z, Zhou G, Sun Q, Jin H, Hou T (2010) In vitro antimicrobial activity of the leaf essential oil of Spiraea alpina Pall. World J Microbiol Biotechnol 26(1):9

    Article  CAS  Google Scholar 

  • Zhang L, Gao F, Ge J, Li H, Xia F, Bai H, Piao X, Shi L (2022) Potential of aromatic plant-derived essential oils for the control of foodborne bacteria and antibiotic resistance in animal production: a review. Antibiotics (basel) 11(11):1673

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors received financial support from Lorestan University for the research,

Author information

Authors and Affiliations

Authors

Contributions

NJ carried out the experiments with assistance from MD, EB and HMN. MHGP and MA analyzed the data and wrote the paper. All the authors revised the final version of the manuscript while MA acted as the corresponding author.

Corresponding author

Correspondence to Milad Aeini.

Ethics declarations

Conflict of interest

The authors do not express any competing interest in the work done and the manuscript written.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamshidi, N., Darvishnia, M., Bazgir, E. et al. Antibacterial activity of some plant-derived essential oils against plant pathogenic bacteria. J Plant Dis Prot 130, 853–865 (2023). https://doi.org/10.1007/s41348-023-00765-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-023-00765-1

Keywords

Navigation