Skip to main content

Advertisement

Log in

Pests and diseases regulation in coffee agroecosystems by management systems and resistance in changing climate conditions: a review

  • Review
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Coffea (Gentianales: Rubiaceae) is an economic plant considering its production income and the number of people that depend on it for their daily livelihoods. Tropical regions predicted to face severe challenges related to climate change impacts often grow coffee. Like other crops, coffee benefits from many ecosystem services, mainly regulating and supporting ecosystem services that play a role in production. Since the emergence of coffee pests and diseases, there have been two primary control techniques: pesticide application and crops management techniques. In most cases, chemical control is nearly ineffective and associated with pesticide resistance, environmental pollution, chemical hazards, and resurgence. This paper reviews management systems and coffee resistance. Studies show that management systems and plant resistance can maintain functional pest and disease regulatory ecosystem services within coffee plantations. We also evaluate how pest and disease regulation services can behave in climate change. The literature shows that managing coffee farms and plant resistance can mitigate the adverse effects of climate change on pest and disease regulation services. Therefore, they can maintain functional ecosystem services and help farmers in tropical areas adapt and be resilient to changing environmental conditions. It is crucial to update these ecological and environmentally friendly control techniques and understand how they will perform under future climate change. Based on the reviewed literature, we identify knowledge gaps and suggest three priority studies in this substantial area of future research. Finding solutions could enhance farmers’ perception of interactions between regulation services and climate change and could support ensuring food security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Push–pull strategy was developed in Kenya as an alternative method to manage both pest and weed; it uses a combination of intercropped repellent plants to deter the stem borers from the maize (pull) and trap crops to attract repelled pest (Lenné and Wood 2011).

  2. Trap crops or trap plants emit signals and attract a pest that feeds on it. However, the hosts have negative effects on pest fecundity, survivorship and result to a pest death.

References

  • Alemu K, Adugna G, Lemessa F, Muleta D (2016) Current status of coffee berry disease (Colletotrichum kahawae Waller and Bridge) in Ethiopia. Arch Phytopathol Plant Prot 49:421–433

    Article  Google Scholar 

  • Alemu K, Adugna G, Lemessa F, Muleta D (2021) Pathogenic variability among Colletotrichum kahawae Waller and Bridge population from major coffee growing regions of Ethiopia. Indian Phytopathol 74:919–928

    Article  Google Scholar 

  • Altieri MA, Nicholls CI (2020) Agroecology: challenges and opportunities for farming in the Anthropocene. Cienc e Investig Agraria: Rev Latinoam De Cienc De La Agric 47:204–215

    Google Scholar 

  • Amaral DS, Venzon M, Pallini A, Lima PC, DeSouza O (2010) A diversificação da vegetação reduz o ataque do bicho-mineiro-do-cafeeiro Leucoptera coffeella (Guérin-mèneville) (Lepidoptera: Lyonetiidae)? Neotrop Entomol 39:543–548

    Article  PubMed  Google Scholar 

  • Androcioli HG, Hoshino AT, de Menezes Júnior AO, Morais H, Bianco R, Caramori PH (2018) Coffee leaf miner incidence and its predation by wasp in coffee intercropped with rubber trees. Coffee Sci 13(3):389

    Article  Google Scholar 

  • Arias RM, Heredia-Abarca G, Sosa VJ, Fuentes-Ramírez LE (2012) Diversity and abundance of arbuscular mycorrhizal fungi spores under different coffee production systems and in a tropical montane cloud forest patch in Veracruz, Mexico. Agrofor Syst 85:179–193

    Article  Google Scholar 

  • Aristizábal LF, Johnson M, Shriner S, Hollingsworth R, Manoukis NC, Myers R, Bayman P, Arthurs SP (2017) Integrated pest management of coffee berry borer in Hawaii and Puerto Rico: current status and prospects. Insects 8:123

    Article  PubMed Central  Google Scholar 

  • Aristizábal N, Metzger JP (2019) Landscape structure regulates pest control provided by ants in sun coffee farms. J Appl Ecol 56:21–30

    Article  Google Scholar 

  • Atallah SS, Gómez MI, Jaramillo J (2018) A bioeconomic model of ecosystem services provision: coffee berry borer and shade-grown coffee in Colombia. Ecol Econ 144:129–138

    Article  Google Scholar 

  • Avelino J, Allinne C, Cerda R, Willocquet L, Savary S (2018) Multiple-disease system in coffee: from crop loss assessment to sustainable management. Annu Rev Phytopathol 56:611–635

    Article  CAS  PubMed  Google Scholar 

  • Avelino J, ten Hoopen GM, DeClerck FA (2012) Ecological mechanisms for pest and disease control in coffee and cacao agroecosystems of the Neotropics. Ecosystem services from agriculture and agroforestry. Routledge, pp 125–152

    Google Scholar 

  • Avelino J, Vílchez S, Segura-Escobar MB, Brenes-Loaiza MA, de Virginio Filho EM, Casanoves F (2020) Shade tree Chloroleucon eurycyclum promotes coffee leaf rust by reducing uredospore wash-off by rain. Crop Prot 129:105038

    Article  CAS  Google Scholar 

  • Avelino J, Willocquet L, Savary S (2004) Effects of crop management patterns on coffee rust epidemics. Plant Pathol 53:541–547

    Article  Google Scholar 

  • Azrag AGA, Murungi LK, Tonnang HEZ, Mwenda D, Babin R (2017) Temperature-dependent models of development and survival of an insect pest of African tropical highlands, the coffee antestia bug Antestiopsis thunbergii (Hemiptera: Pentatomidae). J Therm Biol 70:27–36

    Article  PubMed  Google Scholar 

  • Bagny Beilhe L, Roudine S, Quintero Perez JA, Allinne C, Daout D, Mauxion R, Carval D (2020) Pest-regulating networks of the coffee berry borer (Hypothenemus hampei) in agroforestry systems. Crop Prot 131:105036

    Article  Google Scholar 

  • Bianchi FJ, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc b: Biol Sci 273:1715–1727

    Article  CAS  Google Scholar 

  • Blanchard S, Lognay G, Verheggen F, Detrain C (2019) Today and tomorrow: impact of climate change on aphid biology and potential consequences on their mutualism with ants. Physiol Entomol 44:77–86

    Article  Google Scholar 

  • Bongers G, Fleskens L, Van de Ven G, Mukasa D, Giller KEN, Van Asten P (2015) Diversity in smallholder farms growing coffee and their use of recommended coffee management practices in Uganda. Exp Agric 51:594–614

    Article  Google Scholar 

  • Borkhataria RR, Collazo JA, Groom MJ (2012) Species abundance and potential biological control services in shade vs. sun coffee in Puerto Rico. Agr Ecosyst Environ 151:1–5

    Article  Google Scholar 

  • Bosselmann AS, Dons K, Oberthur T, Olsen CS, Ræbild A, Usma H (2009) The influence of shade trees on coffee quality in smallholder coffee agroforestry systems in Southern Colombia. Agr Ecosyst Environ 129:253–260

    Article  Google Scholar 

  • Bukomeko H, Jassogne L, Kagezi GH, Mukasa D, Vaast P (2018) Influence of shaded systems on Xylosandrus compactus infestation in Robusta coffee along a rainfall gradient in Uganda. Agric for Entomol 20:327–333

    Article  Google Scholar 

  • Carvalho CF, Carvalho SM, Souza B (2019) Coffee. In: Souza B, Vázquez LL, Marucci RC (eds) Natural enemies of insect pests in neotropical agroecosystems: biological control and functional biodiversity. Springer International Publishing, Cham, pp 277–291

    Chapter  Google Scholar 

  • Castro AM, Tapias J, Ortiz A, Benavides P, Góngora CE (2017) Identification of attractant and repellent plants to coffee berry borer, Hypothenemus hampei. Entomol Exp Appl 164:120–130

    Article  CAS  Google Scholar 

  • Chain-Guadarrama A, Martínez-Salinas A, Aristizábal N, Ricketts TH (2019) Ecosystem services by birds and bees to coffee in a changing climate: a review of coffee berry borer control and pollination. Agr Ecosyst Environ 280:53–67

    Article  Google Scholar 

  • Chiu-Alvarado P, Barrera JF, Rojas JC (2009) Attraction of prorops nasuta (Hymenoptera: Bethylidae), a parasitoid of the coffee berry borer (Coleoptera: Curculionidae), to host-associated olfactory cues. Ann Entomol Soc Am 102:166–171

    Article  Google Scholar 

  • Choudhury PP, Saha S (2021) Dynamics of pesticides under changing climatic scenario. Environ Monit Assess 192:814

    Article  PubMed  Google Scholar 

  • Classen A, Peters MK, Ferger SW, Helbig-Bonitz M, Schmack JM, Maassen G, Schleuning M, Kalko EK, Böhning-Gaese K, Steffan-Dewenter I (2014) Complementary ecosystem services provided by pest predators and pollinators increase the quantity and quality of coffee yields. Proc R Soc b: Biol Sci 281:20133148

    Article  Google Scholar 

  • Clay N (2018) Seeking justice in green revolutions: synergies and trade-offs between large-scale and smallholder agricultural intensification in Rwanda. Geoforum 97:352–362

    Article  Google Scholar 

  • Coll M, Wajnberg E (2017) Environmental pest management: challenges for agronomists, ecologists economists and policymakers. John Wiley & Sons, Chichester

    Book  Google Scholar 

  • Damon A (2000) A review of the biology and control of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Bull Entomol Res 90:453–465

    Article  CAS  PubMed  Google Scholar 

  • Dossa EL, Fernandes ECM, Reid WS, Ezui K (2008) Above-and belowground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation. Agrofor Syst 72:103–115

    Article  Google Scholar 

  • Dufour BP, Kerana IW, Ribeyre F (2019) Effect of coffee tree pruning on berry production and coffee berry borer infestation in the Toba Highlands (North Sumatra). Crop Prot 122:151–158

    Article  Google Scholar 

  • Durand-Bessart C, Tixier P, Quinteros A, Andreotti F, Rapidel B, Tauvel C, Allinne C (2020) Analysis of interactions amongst shade trees, coffee foliar diseases and coffee yield in multistrata agroforestry systems. Crop Prot 133:105137

    Article  CAS  Google Scholar 

  • Escobar-Ramírez S, Grass I, Armbrecht I, Tscharntke T (2019) Biological control of the coffee berry borer: main natural enemies, control success, and landscape influence. Biol Control 136:103992

    Article  Google Scholar 

  • Fanani MZ, Rauf A, Maryana N, Nurmansyah A, Hindayana D (2020) Parasitism disruption by ants of Anagyrus lopezi (Hymenoptera Encyrtidae), parasitoid of cassava mealybug. Biodivers J Biol Divers. https://doi.org/10.13057/biodiv/d210601

    Article  Google Scholar 

  • Fernandes FL, Picanço MC, Fernandes MES, Dângelo RAC, Souza FF, Guedes RNC (2015) A new and highly effective sampling plan using attractant-baited traps for the coffee berry borer (Hypothenemus hampei). J Pest Sci 88:289–299

    Article  Google Scholar 

  • Furlong MJ, Zalucki MP (2017) Climate change and biological control: the consequences of increasing temperatures on host–parasitoid interactions. Curr Opin Insect Sci 20:39–44

    Article  PubMed  Google Scholar 

  • Gomes LC, Bianchi FJJA, Cardoso IM, Fernandes RBA, Filho EIF, Schulte RPO (2020) Agroforestry systems can mitigate the impacts of climate change on coffee production: a spatially explicit assessment in Brazil. Agr Ecosyst Environ 294:106858

    Article  Google Scholar 

  • Green PWC, Davis AP, Cossé AA, Vega FE (2015) Can coffee chemical compounds and insecticidal plants be harnessed for control of major coffee pests? J Agric Food Chem 63:9427–9434

    Article  CAS  PubMed  Google Scholar 

  • Guerreiro Filho O (2006) Coffee leaf miner resistance. Braz J Plant Physiol 18:109–117

    Article  Google Scholar 

  • Guerreiro Filho O, Mazzafera P (2000) Caffeine does not protect coffee against the leaf miner Perileucoptera coffeella. J Chem Ecol 26:1447–1464

    Article  CAS  Google Scholar 

  • Guerreiro Filho O, Mazzafera P (2003) Caffeine and resistance of coffee to the berry borer Hypothenemus hampei (Coleoptera: Scolytidae). J Agric Food Chem 51:6987–6991

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Sun Y, Li Y, Tong B, Harris M, Zhu-Salzman K, Ge F (2013) Pea aphid promotes amino acid metabolism both in Medicago truncatula and bacteriocytes to favor aphid population growth under elevated CO2. Glob Change Biol 19:3210–3223

    Article  Google Scholar 

  • Hance T, van Baaren J, Vernon P, Boivin G (2007) Impact of extreme temperature on parasitoids in a climate change perspective. Annu Rev Entomol 52:107–126

    Article  CAS  PubMed  Google Scholar 

  • Harelimana A (2018) Consequences of varietal resistance of Coffea arabica L. and intercropping for the sustainable control of aphid Toxoptera aurantii (Hemiptera: Aphididae) in Rwanda. PhD Thesis, UCL-Université Catholique de Louvain

  • Hindorf H, Omondi CO (2011) A review of three major fungal diseases of Coffea arabica L. in the rainforests of Ethiopia and progress in breeding for resistance in Kenya. J Adv Res 2:109–120

    Article  Google Scholar 

  • Jaramillo J, Muchugu E, Vega FE, Davis A, Borgemeister C, Chabi-Olaye A (2011) Some like it hot: the influence and implications of climate change on coffee berry borer (Hypothenemus hampei) and coffee production in East Africa. PLoS ONE 6:e24528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jezeer RE, Verweij PA, Boot RG, Junginger M, Santos MJ (2019) Influence of livelihood assets, experienced shocks and perceived risks on smallholder coffee farming practices in Peru. J Environ Manag 242:496–506

    Article  Google Scholar 

  • Jha S, Bacon CM, Philpott SM, Ernesto Méndez V, Läderach P, Rice RA (2014) Shade coffee: update on a disappearing refuge for biodiversity. Bioscience 64:416–428

    Article  Google Scholar 

  • Jimenez-Soto E (2020) The political ecology of shaded coffee plantations: conservation narratives and the everyday-lived-experience of farmworkers. J Peasant Stud. https://doi.org/10.1080/03066150.2020.1713109

    Article  Google Scholar 

  • Jonsson M, Raphael IA, Ekbom B, Kyamanywa S, Karungi J (2015) Contrasting effects of shade level and altitude on two important coffee pests. J Pest Sci 88:281–287

    Article  Google Scholar 

  • Karp DS, Mendenhall CD, Sandí RF, Chaumont N, Ehrlich PR, Hadly EA, Daily GC (2013) Forest bolsters bird abundance, pest control and coffee yield. Ecol Lett 16:1339–1347

    Article  PubMed  Google Scholar 

  • Karungi J, Nambi N, Ijala AR, Jonsson M, Kyamanywa S, Ekbom B (2015) Relating shading levels and distance from natural vegetation with hemipteran pests and predators occurrence on coffee. J Appl Entomol 139:669–678

    Article  Google Scholar 

  • Kebati RK, Nyangeri J, Omondi CO, Kubochi JM (2016) Effect of artificial shading on severity of coffee berry disease in Kiambu County, Kenya. Annu Res Rev Biol 9(2):1–11. https://doi.org/10.9734/ARRB/2016/23326

    Article  Google Scholar 

  • Knolhoff LM, Heckel DG (2014) Behavioral assays for studies of host plant choice and adaptation in herbivorous insects. Annu Rev Entomol 59:263–278

    Article  CAS  PubMed  Google Scholar 

  • Kremer JMM, Nooten SS, Cook JM, Ryalls JMW, Barton CVM, Johnson SN (2018) Elevated atmospheric carbon dioxide concentrations promote ant tending of aphids. J Anim Ecol 87:1475–1483

    Article  PubMed  Google Scholar 

  • Krishnan S (2017) Sustainable coffee production. Oxford research encyclopedia of environmental science. Oxford University Press

    Google Scholar 

  • Kumar B (2016) Biocontrol of insect pests. Ecofriendly pest management for food security. Elsevier, pp 25–61

    Google Scholar 

  • Kutywayo D, Chemura A, Kusena W, Chidoko P, Mahoya C (2013) The impact of climate change on the potential distribution of agricultural pests: the case of the coffee white stem borer (Monochamus leuconotus P.) in Zimbabwe. PLoS ONE 8:e73432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamichhane JR, Barzman M, Booij K, Boonekamp P, Desneux N, Huber L, Kudsk P, Langrell SRH, Ratnadass A, Ricci P et al (2015) Robust cropping systems to tackle pests under climate change. Rev Agron Sustain Dev 35:443–459

    Article  Google Scholar 

  • Latini AO, Silva DP, Souza FML, Ferreira MC, de Moura MS, Suarez NF (2020) Reconciling coffee productivity and natural vegetation conservation in an agroecosystem landscape in Brazil. J Nat Conserv 57:125902

    Article  Google Scholar 

  • Leite SA, dos Santos MP, da Costa DR, Moreira AA, Guedes RNC, Castellani MA (2021) Time-concentration interplay in insecticide resistance among populations of the Neotropical coffee leaf miner, Leucoptera coffeella. Agric for Entomol 23:232–241

    Article  Google Scholar 

  • Lenné JM, Wood D (2011) Agrobiodiversity management for food security: a critical review. CABI, Wallingford

    Book  Google Scholar 

  • Lomelí-Flores JR, Barrera JF, Bernal JS (2010) Impacts of weather, shade cover and elevation on coffee leafminer Leucoptera coffeella (Lepidoptera: Lyonetiidae) population dynamics and natural enemies. Crop Prot 29:1039–1048

    Article  Google Scholar 

  • López-Bravo DF, de Virginio-Filho EM, Avelino J (2012) Shade is conducive to coffee rust as compared to full sun exposure under standardized fruit load conditions. Crop Prot 38:21–29

    Article  Google Scholar 

  • Mahdhi M, Tounekti T, Al-Turki TA, Khemira H (2017) Composition of the root mycorrhizal community associated with coffea arabica in Fifa mountains (Jazan region, Saudi Arabia). J Basic Microbiol 57:691–698

    Article  CAS  PubMed  Google Scholar 

  • Mariño YA, Pérez M-E, Gallardo F, Trifilio M, Cruz M, Bayman P (2016) Sun vs. shade affects infestation, total population and sex ratio of the coffee berry borer (Hypothenemus hampei) in Puerto Rico. Agric Ecosyst Environ 222:258–266

    Article  Google Scholar 

  • Mazzafera P, Robinson SP (2000) Characterization of polyphenol oxidase in coffee. Phytochemistry 55:285–296

    Article  CAS  PubMed  Google Scholar 

  • Melo GA, Shimizu MM, Mazzafera P (2006) Polyphenoloxidase activity in coffee leaves and its role in resistance against the coffee leaf miner and coffee leaf rust. Phytochemistry 67:277–285

    Article  CAS  PubMed  Google Scholar 

  • Metcalf RL, Luckmann WH (1994) Introduction to insect pest management. John Wiley & Sons

    Google Scholar 

  • Michereff MFF, Filho MM, Blassioli-Moraes MC, Laumann RA, Diniz IR, Borges M (2015) Effect of resistant and susceptible soybean cultivars on the attraction of egg parasitoids under field conditions. J Appl Entomol 139:207–216

    Article  Google Scholar 

  • Milligan MC, Johnson MD, Garfinkel M, Smith CJ, Njoroge P (2016) Quantifying pest control services by birds and ants in Kenyan coffee farms. Biol Cons 194:58–65

    Article  Google Scholar 

  • Mitiku F, Nyssen J, Maertens M (2018) Certification of semi-forest coffee as a land-sharing strategy in Ethiopia. Ecol Econ 145:194–204

    Article  Google Scholar 

  • la Mora AD, Livingston G, Philpott SM (2008) Arboreal ant abundance and leaf miner damage in coffee agroecosystems in Mexico. Biotropica 40:742–746

    Article  Google Scholar 

  • Morris JR, Perfecto I (2016) Testing the potential for ant predation of immature coffee berry borer (Hypothenemus hampei) life stages. Agr Ecosyst Environ 233:224–228

    Article  Google Scholar 

  • Mosomtai G, Azrag AGA, Babin R, Abdel-Rahman EM, Odindi J, Mutanga O, Tonnang HEZ, Landmann T, David G (2021) Functional land cover scale for three insect pests with contrasting dispersal strategies in a fragmented coffee-based landscape in Central Kenya. Agr Ecosyst Environ 319:107558

    Article  Google Scholar 

  • Mosomtai G, Odindi J, Abdel-Rahman EM, Babin R, Fabrice P, Mutanga O, Tonnang HE, David G, Landmann T (2020) Landscape fragmentation in coffee agroecological subzones in central Kenya: a multiscale remote sensing approach. J Appl Remote Sens 14:044513

    Article  Google Scholar 

  • Mouen Bedimo JA, Bieysse D, Njiayouom I, Deumeni JP, Cilas C, Nottéghem JL (2007) Effect of cultural practices on the development of arabica coffee berry disease, caused by Colletotrichum kahawae. Eur J Plant Pathol 119:391

    Article  Google Scholar 

  • Muschler RG (2001) Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agrofor Syst 51:131–139

    Article  Google Scholar 

  • Nair KP (2021) Coffee. In: Nair KP (ed) Tree crops : harvesting cash from the world’s important cash crops. Springer International Publishing, Cham, pp 215–248

    Chapter  Google Scholar 

  • Narango DL, Tallamy DW, Snyder KJ, Rice RA (2019) Canopy tree preference by insectivorous birds in shade-coffee farms: Implications for migratory bird conservation. Biotropica 51:387–398

    Article  Google Scholar 

  • Ngango J, Kim SG (2019) Assessment of technical efficiency and its potential determinants among small-scale coffee farmers in Rwanda. Agriculture 9:161

    Article  Google Scholar 

  • Ngowi AVF, Maeda DN, Wesseling C, Partanen TJ, Sanga MP, Mbise G (2001) Pesticide-handling practices in agriculture in tanzania: observational data from 27 coffee and cotton farms. Int J Occup Environ Health 7:326–332

    Article  CAS  PubMed  Google Scholar 

  • Ortega DL, Bro AS, Clay DC, Lopez MC, Tuyisenge E, Church RA, Bizoza AR (2019) Cooperative membership and coffee productivity in Rwanda’s specialty coffee sector. Food Secur 11:967–979

    Article  Google Scholar 

  • Otieno HMO, Alwenge BA, Okumu OO (2019) Coffee production challenges and opportunities in tanzania: the case study of coffee farmers in Iwindi, Msia and Lwati Villages in Mbeya Region. Asian J Agric Hortic Res. https://doi.org/10.9734/ajahr/2019/v3i229993

    Article  Google Scholar 

  • Pak D, Iverson AL, Ennis KK, Gonthier DJ, Vandermeer JH (2015) Parasitoid wasps benefit from shade tree size and landscape complexity in Mexican coffee agroecosystems. Agr Ecosyst Environ 206:21–32

    Article  Google Scholar 

  • Perfecto I, Hajian-Forooshani Z, White A, Vandermeer J (2021) Ecological complexity and contingency: Ants and lizards affect biological control of the coffee leaf miner in Puerto Rico. Agr Ecosyst Environ 305:107104

    Article  Google Scholar 

  • Peterson JA, Ode PJ, Oliveira-Hofman C, Harwood JD (2016) Integration of plant defense traits with biological control of arthropod pests: challenges and opportunities. Front Plant Sci 7:1794

    Article  PubMed  PubMed Central  Google Scholar 

  • Philpott SM, Armbrecht I (2006) Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecol Entomol 31:369–377

    Article  Google Scholar 

  • Rahn E, Liebig T, Ghazoul J, van Asten P, Läderach P, Vaast P, Sarmiento A, Garcia C, Jassogne L (2018) Opportunities for sustainable intensification of coffee agroecosystems along an altitudinal gradient on Mt. Elgon, Uganda. Agr Ecosyst Environ 263:31–40

    Article  Google Scholar 

  • Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32:273–303

    Article  Google Scholar 

  • Rezende MQ, Venzon M, dos Santos PS, Cardoso IM, Janssen A (2021) Extrafloral nectary-bearing leguminous trees enhance pest control and increase fruit weight in associated coffee plants. Agr Ecosyst Environ 319:107538

    Article  Google Scholar 

  • Ribas AF, Pereira LFP, Vieira LGE (2006) Transformação genética de café. Braz J Plant Physiol 18:83–94

    Article  CAS  Google Scholar 

  • Rice RA (2018) Coffee in the crosshairs of climate change: agroforestry as abatis. Agroecol Sustain Food Syst 42:1058–1076

    Article  Google Scholar 

  • Righi CA, Campoe OC, Bernardes MS, Lunz AMP, Piedade SMS, Pereira CR (2013) Influence of rubber trees on leaf-miner damage to coffee plants in an agroforestry system. Agrofor Syst 87:1351–1362

    Article  Google Scholar 

  • da Rosado MC, de Araújo GJ, Pallini A, Venzon M (2021) Cover crop intercropping increases biological control in coffee crops. Biol Control 160:104675

    Article  Google Scholar 

  • Schmitz OJ, Barton BT (2014) Climate change effects on behavioral and physiological ecology of predator–prey interactions: implications for conservation biological control. Biol Control 75:87–96

    Article  Google Scholar 

  • Sera GH, Sera T, Ito DS, Ribeiro Filho C, Villacorta A, Kanayama FS, Alegre CR, Del Grossi L (2010) Coffee berry borer resistance in coffee genotypes. Braz Arch Biol Technol 53:261–268

    Article  Google Scholar 

  • Simms EL, Fritz RS (1990) The ecology and evolution of host-plant resistance to insects. Trends Ecol Evol 5:356–360

    Article  CAS  PubMed  Google Scholar 

  • Sinu PA, Viswan G, Fahira PP, Rajesh TP, Manoj K, Hariraveendra M, Jose T (2021) Shade tree diversity may not drive prey-predator interaction in coffee agroforests of the Western Ghats biodiversity hotspot. India Biol Control 160:104674

    Article  Google Scholar 

  • Teixeira HM, Bianchi FJJA, Cardoso IM, Tittonell P, Peña-Claros M (2021) Impact of agroecological management on plant diversity and soil-based ecosystem services in pasture and coffee systems in the Atlantic forest of Brazil. Agr Ecosyst Environ 305:107171

    Article  CAS  Google Scholar 

  • Tougeron K, Hance T (2021) Cascading effects of caffeine intake by primary consumers to the upper trophic level. Bull Entomol Res. https://doi.org/10.1017/S0007485321000687

    Article  PubMed  Google Scholar 

  • Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Hölscher D, Juhrbandt J, Kessler M, Perfecto I et al (2011) Multifunctional shade-tree management in tropical agroforestry landscapes—a review. J Appl Ecol 48:619–629

    Article  Google Scholar 

  • Tumwebaze SB, Byakagaba P (2016) Soil organic carbon stocks under coffee agroforestry systems and coffee monoculture in Uganda. Agr Ecosyst Environ 216:188–193

    Article  Google Scholar 

  • Van Asten P, Wanyama I, Mukasa D, Nansamba R, Kisaakye J, Sserubiri I, Bongers G, Jassogne L (2012) Mapping and evaluating improved intercrop and soil management options for Ugandan coffee farmers. In: Technical report. Project executed by the international institute of tropical institute. Funded by livelihoods and enterprises for agricultural development (LEAD). 90

  • Vandermeer J, Perfecto I, Philpott S (2010) Ecological complexity and pest control in organic coffee production: uncovering an autonomous ecosystem service. Bioscience 60:527–537

    Article  Google Scholar 

  • Vega FE, Brown SM, Chen H, Shen E, Nair MB, Ceja-Navarro JA, Brodie EL, Infante F, Dowd PF, Pain A (2015a) Draft genome of the most devastating insect pest of coffee worldwide: the coffee berry borer. Hypothenemus Hampei Sci Rep 5:12525

    Article  CAS  PubMed  Google Scholar 

  • Vega FE, Infante F, Johnson AJ (2015b) Chapter 11—The genus hypothenemus, with emphasis on H. hampei, the coffee berry borer. In: Vega FE, Hofstetter RW (eds) Bark beetles. Academic Press, San Diego, pp 427–494

    Chapter  Google Scholar 

  • Ventocilla MC, Grossi A, Hernandez-Aguilera JN, Dinku T, Recha J, Ambaw G (2020) Brewing resilience for Ethiopia’s smallholder coffee farmers: a closer look at Ethiopia’s coffee sector to help address climate information gaps

  • Verburg R, Rahn E, Verweij P, van Kuijk M, Ghazoul J (2019) An innovation perspective to climate change adaptation in coffee systems. Environ Sci Policy 97:16–24

    Article  Google Scholar 

  • van der Vossen H, Bertrand B, Charrier A (2015) Next generation variety development for sustainable production of arabica coffee (Coffea arabica L.): a review. Euphytica 204:243–256

    Article  Google Scholar 

  • Weber J, Halsall CJ, Muir D, Teixeira C, Small J, Solomon K, Hermanson M, Hung H, Bidleman T (2010) Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic. Sci Total Environ 408:2966–2984

    Article  CAS  PubMed  Google Scholar 

  • Zaro GC, Caramori PH, Yada Junior GM, Sanquetta CR, Nunes AL, Prete CE, Voroney P (2020) Carbon sequestration in an agroforestry system of coffee with rubber trees compared to open-grown coffee in southern Brazil. Agrofor Syst 94:799–809

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Earth and Life Institute (ELIB) members for their technical assistance. Université Catholique de Louvain (UCL). Many thanks go also to the team of the Technical Assistance for the Sustainable Agriculture Intensification and Food Security Project (TA SAIP) for their encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastase Harelimana.

Ethics declarations

Conflict of interest

We have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harelimana, A., Rukazambuga, D. & Hance, T. Pests and diseases regulation in coffee agroecosystems by management systems and resistance in changing climate conditions: a review. J Plant Dis Prot 129, 1041–1052 (2022). https://doi.org/10.1007/s41348-022-00628-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-022-00628-1

Keywords

Navigation