Skip to main content

Advertisement

Log in

A potent biocide formulation inducing SAR in plants

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Plants extracts possess biocidal activity which can effectively control numerous plant pathogens. In the present study, antimicrobial activity of formulation prepared from aqueous extract of tender core of Musa acuminata pseudostem and Tagetes erecta leaves against pathogens infecting cucumber, barley, spinach and tomato was studied. The extract induced biochemical defense in the host plants, which was sustained for several weeks. The newly emerged leaves in each test species were also protected against their respective pathogens. The activity of peroxidase and polyphenol oxidase was significantly enhanced by the extract formulation, leading to the enhancement of systemic acquired resistance in the host plants. The source materials are by-products of banana and marigold cultivation, which at present have no commercial utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Walters, D. (2011). Plant defense: warding off attack by pathogens, herbivores and parasitic plants. New York: Wiley.

    Google Scholar 

  2. Aman, M., & Rai, V. R. (2015). Antifungal activity of fungicides and plant extracts against yellow sigatoka disease causing Mycosphaerella musicola. Current Research in Environmental and Applied Mycology, 5, 277–284.

    Google Scholar 

  3. Gupta, S., & Dikshit, A. K. (2010). Biopesticides: An eco-friendly approach for pest control. J biopesticides, 3, 186–188.

    Google Scholar 

  4. Kumar, K. S., Bhowmik, D., Duraivel, S., & Umadevi, M. (2012). Traditional and medicinal uses of banana. Journal of Pharmacognosy and Phytochemistry, 1(3), 51–63.

    Google Scholar 

  5. Mokbel, M. S., & Hashinagam, F. (2005). Antibacterial and antioxidant activities of banana (Musa, AAA cv. Cavendish) fruits peel. American Journal of Biochemistry and Biotechnology, 1(3), 125–131.

    Article  Google Scholar 

  6. Fagbemi, J. F., Ugoji, E., Adenipekun, T., & Adelowotan, O. (2009). Evaluation of the antimicrobial properties of unripe banana (Musa sapientum L.), lemon grass (Cymbopogon citratus S.) and turmeric (Curcuma longa L.) on pathogens. African Journal of Biotechnology, 8(7), 1176–1182.

    Google Scholar 

  7. Ehiowemwenguan, G., Emoghene, A. O., & Inetianbor, J. E. (2014). Antibacterial and Phytochemical analysis of banana fruit peel. IOSR Journal of Pharmacy, 4(8), 18–25.

    Article  Google Scholar 

  8. Bakker, J., Gommers, F. J., Nieuwenhuis, I., & Wynberg, H. (1979). Photoactivation of the nematicidal compound alpha–terthienyl from roots of marigolds (Tagetes species). A possible singlet oxygen role. Journal of Biological Chemistry, 254(6), 1841–1844.

    CAS  PubMed  Google Scholar 

  9. Hooks, C. R., Wang, K. H., Ploeg, A., & McSorley, R. (2010). Using marigold (Tagetes spp.) as a cover crop to protect crops from plant–parasitic nematodes. Applied Soil Ecology, 46(3), 307–320.

    Article  Google Scholar 

  10. Maradufu, A., Lubega, R., & Dom, F. (1978). Isolation of (5E)-Ocimerone, a mosquito larvicide from Tagetes minuta. Lloydia (Cincinnati), 41, 181–183.

    CAS  Google Scholar 

  11. Weaver, D. K., Wells, D., Dunkel, F. V., Bertsch, W., Sing, S. E., & Sriharan, S. (1994). Insecticidal activity of floral, foliar, and root extracts of Tagetes minuta (Asterales: Asteraceae) against adult Mexican bean weevils (Coleoptera: Bruchidae). Journal of Economic Entomology, 87(6), 1718–1725.

    Article  Google Scholar 

  12. Natarajan, N., Cork, A., Boomathi, N., Pandi, R., Velavan, S., & Dhakshnamoorthy, G. (2006). Cold aqueous extracts of African marigold, Tagetes erecta for control tomato root knot nematode, Meloidogyne incognita. Crop Protection, 25(11), 1210–1213.

    Article  Google Scholar 

  13. Şesan, T. E., Enache, E., Iacomi, B. M., Oprea, M., Oancea, F., & Iacomi, C. (2015). Antifungal activity of some plant extracts against Botrytis cinerea Pers. in the blackcurrant crop (Ribes nigrum L.). Acta Scientiarum Polonorum Hortorum Cultus, 14, 29–43.

    Google Scholar 

  14. Karuppiah, P., & Mustaffa, M. (2013). Antibacterial and antioxidant activities of Musa sp. leaf extracts against multidrug resistant clinical pathogens causing nosocomial infection. Asian Pacific Journal of Tropical Biomedicine, 3(9), 737–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Naikwade, P. V., Gaurav, S., Sharayu, D., & Kailas, J. (2014). Evaluation of antibacterial properties of Musa paradisiaca L. Leaves. In Proceeding of the national conference on conservation of natural resources & biodiversity for sustainable development.

  16. Singh, G., Singh, O. P., De Lampasona, M. P., & Catalan, C. A. (2003). Studies on essential oils. Part 35: chemical and biocidal investigations on Tagetes erecta leaf volatile oil. Flavour and Fragrance Journal, 18(1), 62–65.

    Article  CAS  Google Scholar 

  17. Dharmagadda, V. S. S., Tandonb, M., & Vasudevan, P. (2005). Biocidal activity of the essential oils of Lantana camara, Ocimum sanctum and Tagetes patula. Journal of Scientific and Industrial Research, 64(1), 53–56.

    CAS  Google Scholar 

  18. Politi, F. A., Queiroz-Fernandes, G. M., Rodrigues, E. R., Freitas, J. A., & Pietro, R. C. (2016). Antifungal, antiradical and cytotoxic activities of extractives obtained from Tagetes patula L. (Asteraceae), a potential acaricide plant species. Microbial Pathogenesis, 95, 15–20.

    Article  PubMed  Google Scholar 

  19. Sangeetha, M., Rajendran, S., Sathiyabama, J., & Prabhakar, P. (2012). Eco friendly extract of Banana peel as corrosion inhibitor for carbon steel in sea water. Journal of Natural Product and Plant Resources, 2(5), 601–610.

    CAS  Google Scholar 

  20. Haq, R. A., Hussain, M., Cheema, Z. A., Mushtaq, M. N., & Farooq, M. (2010). Mulberry leaf water extract inhibits bermudagrass and promotes wheat growth. Weed Biology and Management, 10(4), 234–240.

    Article  Google Scholar 

  21. Yunis, H., Bashan, Y., Okon, Y., & Henis, Y. (1980). Two sources of resistance to bacterial speck of tomato caused by Pseudomonas tomato. Plant Disease, 64, 851–852.

    Article  Google Scholar 

  22. Arabi, M. I. E., & Jawhar, M. (2010). Interrelationship between incidence and severity of leaf stripe on barley. Journal of Plant Pathology, 92, 503–505.

    Google Scholar 

  23. Mitra, J., Bhuvaneshwari, V., & Paul, P. K. (2013). Broad spectrum management of plant diseases by phylloplane microfungal metabolites. Archives of Phytopathology and Plant Protection, 46(16), 1993–2001.

    Article  Google Scholar 

  24. Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Analytical Biochemistry, 53, 304–308.

    Google Scholar 

  25. de Azevedo Neto, A. D., Prisco, J. T., Enéas-Filho, J., Abreu, C. E. B. D., & Gomes-Filho, E. (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 56(1), 87–94.

    Article  Google Scholar 

  26. Rao, K. V., Suprasanna, P., & Reddy, G. M. (1989). Studies on enzyme and isozyme patterns in embryogenic glume calli of maize. Indian National Science Academy, 4, 277–280.

    Google Scholar 

  27. Bogdanović, J., Dučić, T. M., Milosavić, N. B., Vujčić, Z., Šijačić, M., Isajev, V., et al. (2005). Antioxidant enzymes in the needles of different omorika lines. Archives of Biological Science, 57, 277–282.

    Article  Google Scholar 

  28. Anand, T., Raguchander, T., Karthikeyan, G., Prakasam, V., & Samiyappan, R. (2007). Chemically and biologically mediated systemic resistance in cucumber (Cucumis sativus L.) against Pseudoperonospora cubensis and Erysiphe cichoracearum. Phytopathologia Mediterranea, 46(3), 259–271.

    CAS  Google Scholar 

  29. Wang, J., Li, J., Cao, J., & Jiang, W. (2010). Antifungal activities of neem (Azadirachta indica) seed kernel extracts on postharvest diseases in fruits. African Journal of Microbiology Research, 4(11), 1100–1104.

    Google Scholar 

  30. Mbega, E. R., Mortensen, C. N., Mabagala, R. B., & Wulff, E. G. (2012). The effect of plant extracts as seed treatments to control bacterial leaf spot of tomato in Tanzania. Journal of General Plant Pathology, 78(4), 277–286.

    Article  Google Scholar 

  31. Rahmawati, S. L., Esyanti, R. R., & Gunaeni, N. (2014). The role of leaf extracts as plant-activator to enhance salicylic acid production on tomato plant (Lycopersicon esculentum Mill.) Infected by CMV (Cucumber Mosaic Virus). International Journal of Chemical, Environmental and Biological Sciences, 2. www.isaet.org.

  32. Nashwa, S. M., & Abo-Elyousr, K. A. (2012). Evaluation of various plant extracts against the early blight disease of tomato plants under greenhouse and field conditions. Plant Protection Science, 48(2), 74–79.

    Google Scholar 

  33. Meenashree, B., Vasanthi, V. J., & Mary, R. N. I. (2014). Evaluation of total phenolic content and antimicrobial activities exhibited by the leaf extracts of Musa acuminata (banana). International Journal of Current Microbiology and Applied Sciences, 3(5), 136–141.

    Google Scholar 

  34. Mordi, R. C., Fadiaro, A. E., Owoeye, T. F., Olanrewaju, I. O., Uzoamaka, G. C., & Olorunshola, S. J. (2016). Identification by GC-MS of the components of oils of banana peels extract, phytochemical and antimicrobial analyses. Research Journal of Phytochemistry. doi:10.3923/rjphyto.2016.

    Google Scholar 

  35. Jahan, M., Warsi, M. K., & Khatoon, F. (2010). Concentration influence on antimicrobial activity of banana blossom extract-incorporated chitosan-polyethylene glycol (CS-PEG) blended film. Journal of Chemical and Pharmaceutical Research, 2(5), 373–378.

    Google Scholar 

  36. Jain, P., Bhuiyan, M. H., Hossain, K. R., & Bachar, S. C. (2011). Antibacterial and antioxidant activities of local seeded banana fruits. African Journal of Pharmacy and Pharmacology, 5(11), 1398–1403.

    Article  Google Scholar 

  37. D’Addabbo, T., Laquale, S., Lovelli, S., Candido, V., & Avato, P. (2014). Biocide plants as a sustainable tool for the control of pests and pathogens in vegetable cropping systems. Italian Journal of Agronomy, 9(4), 137–145.

    Article  Google Scholar 

  38. Tripathi, P., Shukla, A. K., Ganesan, S., Vadivel, K., & Jayaraman, J. (2015). Potential use of essential oils, plant fats and plant extracts as botanical fungicides (p. 19). Sustainable Crop Disease Management using Natural Products, CAB International.

  39. Debprasad, R., Prasad, D., Singh, R. P., & Ray, D. (2000). Chemical examination and antinemic activity of marigold (Tagetes erecta L) flower. Annals of Plant Protection Sciences, 8(2), 212–217.

    Google Scholar 

  40. Hussain, M. A., Mukhtar, T., & Kayani, M. Z. (2011). Efficacy evaluation of Azadirachta indica, Calotropis procera, Datura stramonium and Tagetes erecta against root-knot nematodes Meloidogyne incognita. Pakistan Journal of Botany, 43(1), 197–204.

    Google Scholar 

  41. Céspedes, C. L., Avila, J. G., Martínez, A., Serrato, B., Calderón-Mugica, J. C., & Salgado-Garciglia, R. (2006). Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). Journal of Agriculture and Food Chemistry, 54(10), 3521–3527.

    Article  Google Scholar 

  42. Tereschuk, M. L., Riera, M. V., Castro, G. R., & Abdala, L. R. (1997). Antimicrobial activity of flavonoids from leaves of Tagetes minuta. Journal of Ethnopharmacology, 56(3), 227–232.

    Article  CAS  PubMed  Google Scholar 

  43. Dasgupta, N., Ranjan, S., Saha, P., Jain, R., Malhotra, S., & Arabi Mohamed Saleh, M. A. (2012). Antibacterial activity of leaf extract of Mexican marigold (Tagetes erecta) against different gram positive and gram negative bacterial strains. Journal of Pharmacy Research, 5(8), 4201–4203.

    Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to Amity Institute of Biotechnology, Amity University Uttar Pradesh, NOIDA, India, for providing the necessary infrastructural facilities and DST–INSPIRE, Government of India, for providing Senior Research Fellowship to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, J., Paul, P.K. A potent biocide formulation inducing SAR in plants. J Plant Dis Prot 124, 163–175 (2017). https://doi.org/10.1007/s41348-016-0067-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-016-0067-3

Keywords

Navigation