Skip to main content
Log in

Abiotic factors affecting the larvicidal activity of the Bacillus thuringiensis Vip3Aa16 toxin against the lepidopteran pest Ephestia kuehniella

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

BUPM95 is a Bacillus thuringiensis subsp. kurstaki strain producing the Vip3Aa16 protoxin with an interesting insecticidal activity against the lepidopteran pest Ephestia kuehniella. The LC50 of Vip3Aa16 protoxin against first instar larvae of E. kuehniella (Lepidoptera: Pyralidae) was 31.36 ng/cm2 5 days post-treatment at 28 °C. Interestingly, this B. thuringiensis protoxin could relatively withstand environmental stresses such as extreme pH, temperature and UV radiations. Its larvicidal potency was also resistant to proteases action. These properties could be exploited for the formulation of a novel B. thuringiensis insecticide for effective biocontrol of undesirable lepidopteran larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdelkefi-Mesrati L, Boukedi H, Chakroun M, Kamoun F, Azzouz H, Tounsi S, Rouis S, Jaoua S (2011) Investigation of the steps involved in the difference of susceptibility of Ephestia kuehniella and Spodoptera littoralis to the Bacillus thuringiensis Vip3Aa16 toxin. J Invertebr Pathol 107:198–201

    Article  CAS  PubMed  Google Scholar 

  2. Abdelkefi-Mesrati L, Boukedi H, Dammak-Karray M, Sellami-Boudawara T, Jaoua S, Tounsi S (2011) Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. J Invertebr Pathol 106:250–254

    Article  CAS  PubMed  Google Scholar 

  3. Abdelkefi-Mesrati L, Tounsi S, Jaoua S (2005) Characterization of a novel vip3-type gene from Bacillus thuringiensis and evidence of its presence on a large plasmid. FEMS Microbiol Lett 244:353–358

    Article  Google Scholar 

  4. Arthur FH (1996) Grain protectants: current status and prospects for the future. J Stored Prod Res 32:293–302

    Article  Google Scholar 

  5. Becker N, Zgomba M, Ludwig M, Petric D, Rettich F (1992) Factors influencing the activity of Bacillus thuringiensis var. israelensis treatments. J Am Mosq Control Assoc 8:286–289

    Google Scholar 

  6. Bell CH (2000) Fumigation in the 21st century. Crop Prot 19:563–569

    Article  CAS  Google Scholar 

  7. Caccia et al (2014) Proteolytic processing of Bacillus thuringiensis Vip3A proteins by two Spodoptera species. J Insect Physiol 67:76–84

    Article  CAS  PubMed  Google Scholar 

  8. Chakroun M, Bel Y, Caccia S, Abdelkefi-Mesrati L, Escriche B, Ferré J (2012) Susceptibility of Spodoptera frugiperda and S. exigua to Bacillus thuringiensis Vip3Aa insecticidal protein. J Invertebr Pathol 110:334–339

    Article  CAS  PubMed  Google Scholar 

  9. Ghribi D, Elleuch M, Abdelkefi-Mesrati L, Ellouze-Chaabouni S (2012) Evaluation of larvicidal potency of Bacillus subtilis SPB1 biosurfactant against Ephestia kuehniella (Lepidoptera: Pyralidae) larvae and influence of abiotic factors on its insecticidal activity. J Stored Prod Res 48:68–72

    Article  CAS  Google Scholar 

  10. Gringorten JL, Milne RE, Fast PG, Sohi SS, van Frankenhuyzen K (1992) Suppression of Bacillus thuringiensis δ-endotoxin activity by low alkaline pH. J Invertebr Pathol 60:47–52

    Article  CAS  Google Scholar 

  11. Jallouli W, Abdelkefi-Mesrati L, Tounsi S, Jaoua S, Zouari N (2013) Potential of Photorhabdus temperata K122 bioinsecticide in protecting wheat flour against Ephestia kuehniella. J Stored Prod Res 53:61–66

    Article  Google Scholar 

  12. Lee MK, Miles P, Chen JS (2006) Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midguts. Biochem Biophys Res Commun 339:1043–1047

    Article  CAS  PubMed  Google Scholar 

  13. Lee MK, Walters FS, Hart H, Palekar N, Chen JS (2003) The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab δ-endotoxin. Appl Environ Microbiol 69:4648–4657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Medeiros FP, Santos MA, Regis L, Rios EM, Rolim Neto PJ (2005) Development of a Bacillus sphaericus tablet formulation and its evaluation as a larvicide in the biological control of Culex quinquefasciatus. Mem Inst Oswaldo Cruz 100:431–434

    Article  PubMed  Google Scholar 

  15. Mittal PK (2003) Biolarvicides in vector control: challenges and prospects. J Vector Dis 40:20–32

    CAS  Google Scholar 

  16. Mittal PK, Adak T, Sharma VP (1995) Effect of water pH on the larvicidal activity of Spherix (Bacillus sphaericus) and Bactoculicide (Bacillus thuringiensis H-14) against mosquitoes. Natl Acad Sci Lett 18:189–191

    Google Scholar 

  17. Nayar JK, Knight JW, Ali A, Carlson DB, O’Bryan PD (1999) Laboratory evaluation of biotic and abiotic factors that may influence larvicidal activity of Bacillus thuringiensis serovar israelensis against two Florida mosquito species. J Am Mosq Control Assoc 15:32–42

    CAS  PubMed  Google Scholar 

  18. Pozsgay M, Fast P, Kaplan H, Carey PR (1987) The effect of sunlight on the protein crystals from Bacillus thuringiensis var. kurstaki HD1 and NRD12: a Raman spectroscopic study. J Invertebr Pathol 50:246–253

    Article  CAS  Google Scholar 

  19. Rees D (2003) Insects of stored products. CSIRO Publishing, London, p 181

    Google Scholar 

  20. Rouis S, Chakroun M, Saadaoui I, Jaoua S (2007) Proteolysis, histopathological effects, and immunohistopathological localization of δ-endotoxins of Bacillus thuringiensis subsp. kurstaki in the midgut of Lepidopteran olive tree pathogenic insect Prays oleae. Mol Biotechnol 35:141–148

    Article  CAS  PubMed  Google Scholar 

  21. Venables WN, Smith DM (2004) The R Development Core Team. An Introduction to R Version 1.9.1. http://www.r-project.org/

Download references

Acknowledgments

This work was supported by grants from the Ministry of Higher Education and Scientific Research, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lobna Abdelkefi-Mesrati.

Ethics declarations

Conflict of interest

Hanen Boukedi, Slim Tounsi and Lobna Abdelkefi-Mesrati declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukedi, H., Tounsi, S. & Abdelkefi-Mesrati, L. Abiotic factors affecting the larvicidal activity of the Bacillus thuringiensis Vip3Aa16 toxin against the lepidopteran pest Ephestia kuehniella . J Plant Dis Prot 123, 59–64 (2016). https://doi.org/10.1007/s41348-016-0004-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-016-0004-5

Keywords

Navigation