Skip to main content
Log in

Identification of coconut palm trees using single shot detector deep learning model

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

Coconut palm tree plantation, monitoring and management in tropical countries is vital to improving exports, domestic food use and the economy. Remote sensing and GIS technologies are widely used to maintain and monitor the coconut palm’s health and production using very high-resolution satellite data. Deep learning algorithms will help identify and monitor the growth and health of coconut palms automatically using satellite data. In this study, a deep learning model has been developed to identify the coconut trees using Worldview-2 satellite data. ArcGIS Pro software is used to develop the deep learning model. Single Shot Detector (SSD) algorithm is adopted for developing the model to detect the coconut trees. The model is based on the object detection technique. The generated model accurately identified the individual trees for the study area using the Worldview-2 satellite data. Produced maps will be used to calculate the population of coconut trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Santana, I. A., Ribeiro, E. P., & Iguti, A. M. (2011). Evaluation of green coconut (Cocos nucifera L.) pulp for use as milk, fat and emulsifier replacer in ice cream. Procedia Food Science, 1, 1447–1453. https://doi.org/10.1016/j.profoo.2011.09.214

    Article  Google Scholar 

  2. Kumar, B. M., & Kunhamu, T. K. (2022). Nature-based solutions in agriculture: A review of the coconut (Cocos nucifera L.)-based farming systems in Kerala, “the land of Coconut Trees. Nature-Based Solutions, 2, 100012. https://doi.org/10.1016/j.nbsj.2022.100012

    Article  Google Scholar 

  3. Ferreira, J. A., Fassoni, A. C., Ferreira, J. M. S., Lins, P. M. P., & Bottoli, C. B. G. (2022). Cyproconazole translocation in coconut palm tree using vegetative endotherapy: Evaluation by LC-MS/MS and mathematical modeling. Horticulturae, 8(12), 1099. https://doi.org/10.3390/horticulturae8121099

    Article  Google Scholar 

  4. Simas-Tosin, F. F., Barraza, R. R., Maria-Ferreira, D., Werner, M. F., de Baggio, P., Wagner, C. H., Smiderle, R., Carbonero, F. R., Sassaki, E. R., Iacomini, G. L., M., & Gorin, P. A. J. (2014). Glucuronoarabinoxylan from coconut palm gum exudate: Chemical structure and gastroprotective effect. Carbohydrate Polymers, 107, 65–71https://doi.org/10.1016/j.carbpol.2014.02.030

  5. Lima, E. B. C., Sousa, C. N. S., Meneses, L. N., Ximenes, N. C., Santos Junior, M. A., Vasconcelos, G. S., Lima, N. B. C., Patrocinio, M. C. A., Macedo, D., & Vasconcelos, S. M. M. (2015). Cocos nucifera (L.) (Arecaceae): A phytochemical and pharmacological review. Brazilian Journal of Medical and Biological Research, 48(11), 953–964. https://doi.org/10.1590/1414-431x20154773

    Article  Google Scholar 

  6. Hebbar, K. B., Neethu, P., Sukumar, P. A., Sujithra, M., Santhosh, A., Ramesh, S. V., Niral, V., Hareesh, G. S., Nameer, P. O., & Prasad, P. V. V. (2020). Understanding physiology and impacts of high temperature stress on the progamic phase of coconut (Cocos nucifera L). Plants, 9(12), 1651. https://doi.org/10.3390/plants9121651

    Article  Google Scholar 

  7. Arumugam, T., & Hatta, M. A. M. (2022). Improving coconut using modern breeding technologies: Challenges and opportunities. Plants, 11(24), 3414. https://doi.org/10.3390/plants11243414

    Article  Google Scholar 

  8. Pandiselvam, R., Manikantan, M. R., Kothakota, A., Rajesh, G. K., Beegum, S., Ramesh, S. V., Niral, V., & Hebbar, K. B. (2018). Engineering properties of five varieties of coconuts (Cocos nucifera L.) for efficient husk separation. Journal of Natural Fibers, 17(4), 589–597. https://doi.org/10.1080/15440478.2018.1507863

    Article  Google Scholar 

  9. Agyemang-Yeboah, F. (2011). Health benefits of coconut (Cocos nucifera Linn.) seeds and coconut consumption. In Nuts and Seeds in Health and Disease Prevention (pp. 361–367) Elsevier. https://doi.org/10.1016/B978-0-12-375688-6.10043-X

  10. Chinnamma, M., Bhasker, S., Binitha Hari, M., Sreekumar, D., & Madhav, H. (2019). Coconut Neera—A vital health beverage from coconut palms: Harvesting, processing and quality analysis. Beverages, 5(1), 22. https://doi.org/10.3390/beverages5010022

    Article  Google Scholar 

  11. Suryani, S., Sariani, S., Earnestly, F., Marganof, M., Rahmawati, R., Sevindrajuta, S., Mahlia, T. M. I., & Fudholi, A. (2020). A comparative study of virgin coconut oil, coconut oil and palm oil in terms of their active ingredients. Processes, 8(4), 402. https://doi.org/10.3390/pr8040402

    Article  Google Scholar 

  12. Lee-Rangel, H. A., Vázquez Valladolid, A., Mendez-Cortes, H., Garcia-Lopez, J. C., Álvarez-Fuentes, G., Roque-Jimenez, J. A., Mejia-Delgadillo, M. A., Negrete-Sánchez, L. O., Cifuentes-López, O., & Ramírez-Tobías, H. M. (2021). Influence of copra meal in the lambs diet on in vitro ruminal kinetics and greenhouse gases production. Agriculture, 11(10), 925. https://doi.org/10.3390/agriculture11100925

    Article  Google Scholar 

  13. Ahmad, W., Farooq, S. H., Usman, M., Khan, M., Ahmad, A., Aslam, F., Yousef, R. A., Abduljabbar, H. A., & Sufian, M. (2020). Effect of coconut fiber length and content on properties of high strength concrete. Materials, 13(5), 1075. https://doi.org/10.3390/ma13051075

    Article  Google Scholar 

  14. Ayeni, O., Mahamat, A. A., Bih, N. L., Stanislas, T. T., Isah, I., Junior, S., Boakye, H., E., & Onwualu, A. P. (2022). Effect of coir fiber reinforcement on properties of metakaolin-based geopolymer composite. Applied Sciences, 12(11), 5478. https://doi.org/10.3390/app12115478

    Article  Google Scholar 

  15. Maia Pederneiras, C., Veiga, R., & de Brito, J. (2021). Physical and mechanical performance of coir fiber-reinforced rendering mortars. Materials, 14(4), 823. https://doi.org/10.3390/ma14040823

    Article  Google Scholar 

  16. Moreno, M. L., Kuwornu, J. K. M., & Szabo, S. (2020). Overview and constraints of the coconut supply chain in the Philippines. International Journal of Fruit Science, 20(sup2), S524–S541. https://doi.org/10.1080/15538362.2020.1746727

  17. Vermote, E. F., Skakun, S., Becker-Reshef, I., & Saito, K. (2020). Remote sensing of coconut trees in Tonga using very high spatial resolution WorldView-3 data. Remote Sensing, 12(19), 3113. https://doi.org/10.3390/rs12193113

    Article  Google Scholar 

  18. Moharram, D., Yuan, X., & Li, D. (2023). Tree seedlings detection and counting using a deep learning algorithm. Applied Sciences, 13(2), 895. https://doi.org/10.3390/app13020895

    Article  Google Scholar 

  19. Culman, M., Delalieux, S., & Van Tricht, K. (2020). Individual palm tree detection using deep learning on RGB imagery to support tree inventory. Remote Sensing, 12(21), 3476. https://doi.org/10.3390/rs12213476

    Article  Google Scholar 

  20. Gibril, M. B. A., Shafri, H. Z. M., Shanableh, A., Al-Ruzouq, R., Wayayok, A., & Hashim, S. J. (2021). Deep convolutional neural network for large-scale date palm tree mapping from UAV-based images. Remote Sensing, 13(14), 2787. https://doi.org/10.3390/rs13142787

    Article  Google Scholar 

  21. Burnett, M. W., White, T. D., McCauley, D. J., De Leo, G. A., & Micheli, F. (2019). Quantifying coconut palm extent on Pacific islands using spectral and textural analysis of very high resolution imagery. International Journal of Remote Sensing, 40(19), 7329–7355. https://doi.org/10.1080/01431161.2019.1594440

    Article  Google Scholar 

  22. Freudenberg, M., Nölke, N., Agostini, A., Urban, K., Wörgötter, F., & Kleinn, C. (2019). Large scale palm tree detection in high resolution satellite images using U-Net. Remote Sensing, 11(3), 312. https://doi.org/10.3390/rs11030312

    Article  Google Scholar 

  23. Ammar, A., Koubaa, A., & Benjdira, B. (2021). Deep-learning-based automated palm tree counting and geolocation in large farms from aerial geotagged images. Agronomy, 11(8), 1458. https://doi.org/10.3390/agronomy11081458

    Article  Google Scholar 

  24. Liu, X., Ghazali, K. H., Han, F., & Mohamed, I. I. (2021). Automatic detection of oil palm tree from UAV images based on the deep learning method. Applied Artificial Intelligence, 35(1), 13–24. https://doi.org/10.1080/08839514.2020.1831226

    Article  Google Scholar 

  25. Chowdhury, P. N., Shivakumara, P., Nandanwar, L., Samiron, F., Pal, U., & Lu, T. (2022). Oil palm tree counting in drone images. Pattern Recognition Letters, 153, 1–9. https://doi.org/10.1016/j.patrec.2021.11.016

  26. Kipli, K., Osman, S., Joseph, A., Zen, H., Awang Salleh, D. N. S. D., Lit, A., & Chin, K. L. (2023). Deep learning applications for oil palm tree detection and counting. Smart Agricultural Technology, 5, 100241. https://doi.org/10.1016​/j.atech.2023.100241.

    Article  Google Scholar 

  27. Wibowo, H., Sitanggang, I. S., Mushthofa, M., & Adrianto, H. A. (2022). Large-scale oil palm trees detection from high-resolution remote sensing images using deep learning. Big Data and Cognitive Computing, 6(3), 89. https://doi.org/10.3390/bdcc6030089

    Article  Google Scholar 

  28. Iqbal, M. S., Ali, H., Tran, S. N., & Iqbal, T. (2021). Coconut trees detection and segmentation in aerial imagery using mask region-based convolution neural network. IET Computer Vision, 15(6), 428–439. https://doi.org/10.1049/cvi2.12028

    Article  Google Scholar 

  29. Mohan, M., Mendonça, B. A. F., Silva, C. A., Klauberg, C., de Saboya Ribeiro, A. S., de Araújo, E. J. G., Monte, M. A., & Cardil, A. (2019). Optimizing individual tree detection accuracy and measuring forest uniformity in coconut (Cocos nucifera L.) plantations using airborne laser scanning. Ecological Modelling, 409, 108736. https://doi.org/10.1016/j.ecolmodel.2019.108736

    Article  Google Scholar 

  30. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). SSD: Single Shot MultiBox Detector (Vol. 9905, pp. 21–37)https://doi.org/10.1007/978-3-319-46448-0_2

  31. Jintasuttisak, T., Edirisinghe, E., & Elbattay, A. (2022). Deep neural network based date palm tree detection in drone imagery. Computers and Electronics in Agriculture, 192, 106560. https://doi.org/10.1016/j.compag.2021.106560

    Article  Google Scholar 

  32. Zheng, Y., & Wu, G. (2021). Single shot multibox detector for urban plantation single tree detection and location with high-resolution remote sensing imagery. Frontiers in Environmental Science, 9, 755587. https://doi.org/10.3389/fenvs.2021.755587

    Article  Google Scholar 

  33. Arce, L. S. D., Osco, L. P., Arruda, M. dos, de Furuya, S., Ramos, D. E. G., Aoki, A. P. M., Pott, C., Fatholahi, A., Li, S., Araújo, J., de Gonçalves, F. F., W. N., & Junior, M. (2021). J. Mauritia flexuosa palm trees airborne mapping with deep convolutional neural network. Scientific Reports, 11(1), 19619. https://doi.org/​10.1038/s41598-021-98522-7.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vigneshwaran.

Ethics declarations

Conflict of Interest

No conflict of Interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigneshwaran, S., Tamburi, V.N. Identification of coconut palm trees using single shot detector deep learning model. Spat. Inf. Res. 31, 695–707 (2023). https://doi.org/10.1007/s41324-023-00542-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-023-00542-0

Keywords

Navigation