Skip to main content
Log in

Spatio-temporal analysis of fire incidences in urban context: the case study of Mashhad, Iran

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

The study aims to identify fire patterns in Mashhad, the second-most populous city in Iran, between 2015 and 2019. Spatial scan statistics were utilized to determine the spatiotemporal patterns of 29,889 fire events in the research area. There were four primary types of fires: (1) structural fires (39%), (2) vehicle fires (11%), (3) green and open space fires (19%), and (4) others (31%). The interval from 12:00 to 23:00 h was identified as the high-risk period for all fire incidents. Fires were common in the nearby city core. Additionally, three significant hourly spatial-temporal clusters of firefighting operations were identified: the western part of the city between 12:00 and 23:00, the city center between 11:00 and 22:00, and the southeastern part between 11:00 and 22:00. Population density, illiteracy ratio, unemployment ratio, youth ratio, low-income population, and the number of old buildings might be socio-economic criteria that contribute to the spatiotemporal pattern of urban fires. Urban planners might prioritize high-risk neighborhoods when allocating resources for fire safety. Future research could specifically investigate high-risk regions to identify relevant characteristics in these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bulai, A., Roşu, L., & Bănică, A. (2019). Patterns of Urban Fire Occurence in Iasi City (Romania). Present Environment and Sustainable Development (2):87–102.

  2. Yao, J., & Zhang, X. (2016). Spatial-temporal Dynamics of Urban Fire incidents: A case study of Nanjing, China. ISPRS-International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences 63–69.

  3. Yao, J., Zhang, X., & Murray, A. T. (2019). Location optimization of Urban Fire Stations: Access and Service Coverage. Computers Environment and Urban Systems, 73, 184–190.

    Article  Google Scholar 

  4. World Fire Statistics. n.d. World Fire Statistics | CTIF - International Association of Fire Services for Safer Citizens through Skilled Firefighters. Retrieved November 30, 2022 (https://www.ctif.org/world-fire-statistics).

  5. Clare, J., Townsley, M., Birks, D. J., & Garis, L. (2019). Patterns of police, fire, and ambulance calls-for-Service: Scanning the spatio-temporal intersection of emergency service problems. Policing: A Journal of Policy and Practice, 13(3), 286–299.

    Article  Google Scholar 

  6. Kiran, K. C., & Corcoran, J. (2017). Modelling residential Fire Incident Response Times: A spatial Analytic Approach. Applied Geography, 84, 64–74.

    Article  Google Scholar 

  7. Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D’Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison, S. P., & Others (2009). Fire in the Earth System. Science, 324(5926), 481–484.

    Article  Google Scholar 

  8. Langmann, B., Duncan, B., Textor, C., Trentmann, J., & van der Werf, G. R. (2009). Vegetation Fire Emissions and their impact on Air Pollution and Climate. Atmospheric Environment, 43(1), 107–116.

    Article  Google Scholar 

  9. Huang, Y., Zhou, X., Cao, B., & Yang, L. (2020). Computational Fluid Dynamics-Assisted smoke control System Design for solving fire uncertainty in buildings. Indoor and Built Environment, 29(1), 40–53.

    Article  Google Scholar 

  10. Vlahov, D., & Galea, S. (2002). Urbanization, urbanicity, and Health. Journal of Urban Health: Bulletin of the New York Academy of Medicine, 79(4 Suppl 1), https://doi.org/10.1093/JURBAN/79.SUPPL_1.S1.

  11. Department of Economic and Social Affairs, the United Nations. n.d. Challenges and Way Forward in the Urban Sector. Retrieved November 30, 2022 (https://sustainabledevelopment.un.org/content/documents/challenges_and_way_forward_in_the_urban_sector_web.pdf).

  12. Lankao, P. R., & Qin, H. (2011). Conceptualizing Urban Vulnerability to Global Climate and Environmental Change. Current Opinion in Environmental Sustainability, 3(3), 142–149.

    Article  Google Scholar 

  13. Ceyhan, E., Ertuğay, K., & Düzgün, Ş. (2013). Exploratory and inferential methods for spatio-temporal analysis of Residential Fire Clustering in Urban Areas. Fire Safety Journal, 58, 226–239.

    Article  Google Scholar 

  14. Xin, J., & Huang, C. F. (2014). Fire Risk Assessment of residential buildings based on Fire Statistics from China. Fire Technology, 50(5), 1147–1161. https://doi.org/10.1007/s10694-013-0327-8.

    Article  Google Scholar 

  15. Zhang, X., Yao, J., & Sila-Nowicka, K. (2018). Exploring Spatiotemporal Dynamics of Urban fires: A case of Nanjing, China. ISPRS International Journal of Geo-Information, 7(1), 7.

    Article  Google Scholar 

  16. Alcasena, F. J., Ager, A. A., Salis, M., Day, M. A., & Vega-Garcia, C. (2018). Optimizing prescribed fire allocation for managing fire risk in Central Catalonia. Science of the Total Environment, 621, 872–885.

    Article  Google Scholar 

  17. Cai, N., & Chow, W. K. (2019). Numerical Studies on Fire Hazards of Elevator Evacuation in Supertall buildings. Indoor and Built Environment, 28(2), 247–263.

    Article  Google Scholar 

  18. Balahadia, F. F., & Trillanes, A. O. (2017). Improving fire services using spatio-temporal analysis: Fire incidents in Manila (pp. 1–5). in. IEEE.

  19. Velasco, G. N. (2013). Epidemiological Assessment of Fires in the Philippines, 2010–2012. PIDS Discussion Paper Series.

  20. Anon (2022). n.d.-a. Population Division. Retrieved December 1, (https://www.un.org/development/desa/pd/).

  21. Twigg, J., Christie, N., Haworth, J., Osuteye, E., & Skarlatidou, A. (2017). Improved methods for Fire Risk Assessment in Low-Income and Informal settlements. International Journal of Environmental Research and Public Health, 14(2), 139. https://doi.org/10.3390/ijerph14020139.

    Article  Google Scholar 

  22. Rahman Tishi, T., & Islam, I. (2019). Urban Fire Occurrences in the Dhaka Metropolitan Area. GeoJournal 84(6):1417–27. doi: https://doi.org/10.1007/s10708-018-9923-y.

  23. Sahebi, M. T., Rahman, M. M., & Rahman, M. M. (2020). Fire Risk Situation Analysis in the Nimtoli Area of Old Dhaka. Journal of the Asiatic Society of Bangladesh Science, 46(1), 91–102.

    Article  Google Scholar 

  24. Masoumi, Z., van Genderen, L., J., & Maleki, J. (2019). Fire Risk Assessment in dense urban areas using Information Fusion techniques. ISPRS International Journal of Geo-Information, 8(12), 579.

    Article  Google Scholar 

  25. Balahadia, F. F., Vinluan, A. A., Gonzales, D. B., & Ballera, M. A. (2020). Application of Spatiotemporal Analysis and Knowledge Discovery for Databases in the Bureau of Fire Protection as Incident Report System: Tool for improving Fire Services. International Journal of Computing Sciences Research, 5, 519–533.

    Google Scholar 

  26. Mohammadi, A., Shahparvari, S., Kiani, B., Noori, S., & Chhetri, P. (2022). An analysis of spatio–temporal patterns of fires in an iranian city. Indoor and Built Environment 1420326X211055782.

  27. Chhetri, P., Corcoran, J., Ahmad, S., & KC, K. (2018). Examining spatio-temporal patterns, drivers and trends of residential fires in South East Queensland, Australia. Disaster Prevention and Management: An International Journal, 27(5), 586–603.

    Article  Google Scholar 

  28. Hu, J., Shu, X., Xie, S., Tang, S., Wu, J., & Deng, B. (2019). Socioeconomic determinants of urban fire risk: A city-wide analysis of 283 chinese cities from 2013 to 2016. Fire Safety Journal, 110, e102890–e102890.

    Article  Google Scholar 

  29. Todorovic, S. (2020). Modelling risk factors in urban residential fires in Helsinki.

  30. Ferreira, T. M., Vicente, R., Mendes da Silva, J. A. R., Varum, H., Costa, A., & Maio, R. (2016). Urban Fire Risk: Evaluation and Emergency Planning. Journal of Cultural Heritage, 20, 739–745.

    Article  Google Scholar 

  31. Srivanit, M. (2011). Community risk assessment: Spatial patterns and GIS-based model for fire risk assessment-a case study of Chiang Mai municipality. Journal of Architectural/Planning Research and Studies (JARS), 8(2), 113–126.

    Article  Google Scholar 

  32. Hastie, C., & Searle, R. (2016). Socio-economic and demographic predictors of accidental dwelling fire rates. Fire Safety Journal, 84, 50–56.

    Article  Google Scholar 

  33. Rahmawati, D., Pamungkas, A., Aulia, B. U., Larasati, K. D., Rahadyan, G. A., & Dito, A. H. (2016). Participatory mapping for urban fire risk reduction in high-density urban settlement. Procedia-Social and Behavioral Sciences, 227, 395–401.

    Article  Google Scholar 

  34. Ardiantoa, R., Chhetria, P., & Dunstallb, S. (2015). Modelling the likelihood of urban residential fires considering fire history and the built environment: a markov chain approach. In 21st International Congress on Modelling and Simulations, Australia

  35. Shahparvari, S., Fadaki, M., & Chhetri, P. (2020). Spatial accessibility of fire stations for enhancing operational response in Melbourne. Fire safety journal, 117, 103149.

    Article  Google Scholar 

  36. Špatenková, O., & Virrantaus, K. (2013). Discovering spatio-temporal Relationships in the distribution of building fires. Fire Safety Journal, 62, 49–63.

    Article  Google Scholar 

  37. Wuschke, K., Clare, J., & Garis, L. (2013). Temporal and Geographic Clustering of Residential structure fires: A theoretical platform for targeted fire Prevention. Fire Safety Journal, 62, 3–12.

    Article  Google Scholar 

  38. Firouraghi, N., Mohammadi, A., Hamer, D. H., Bergquist, R., Mostafavi, S. M., Shamsoddini, A., Raouf-Rahmati, A., Fakhar, M., Moghaddas, E., & Kiani, B. (2022). Spatio-temporal visualisation of cutaneous leishmaniasis in an endemic, urban area in Iran. Acta Tropica, 225, 106181. https://doi.org/10.1016/J.ACTATROPICA.2021.106181.

    Article  Google Scholar 

  39. Duncan, E. W., White, N. M., & Mengersen, K. (2017). Spatial smoothing in bayesian models: A comparison of weights matrix specifications and their impact on inference. International Journal of Health Geographics, 16(1), 1–16.

    Article  Google Scholar 

  40. Kiani, B., Fatima, M., Hashemi Amin, N., & Hesami, A. (2022). Comparing Geospatial Clustering Methods to Study Spatial Patterns of Lung Cancer Rates in Urban Areas: A Case Study in Mashhad, Iran. GeoJournal 1–11.

  41. Anon (2022). n.d.-b. What Is a Z-Score? What Is a p-Value?—ArcGIS Pro | Documentation. Retrieved November 30, (https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/what-is-a-z-score-what-is-a-p-value.htm#ESRI_SECTION1_2C5DFC8106F84F988982CABAEDBF1440).

  42. Kulldorff, M. (1997). A spatial scan Statistic. Communications in Statistics - Theory and Methods, 26(6), 1481–1496. https://doi.org/10.1080/03610929708831995.

    Article  Google Scholar 

  43. Zhang, X., Yao, J., Sila-Nowicka, K., & Jin, Y. (2020). Urban fire dynamics and its association with urban growth: Evidence from Nanjing, China. ISPRS International Journal of Geo-Information, 9(4), 218.

    Article  Google Scholar 

  44. Smith, J., Dhinsa, A., Rajabali, F., Zheng, A., Bruin, S., & Pike, I. (2018). The epidemiology of residential fires among children and youth in Canada.?.

  45. Bringula, R., & Balahadia, F. (2018). A spatiotemporal analysis of fire incidents in Manila from 2011–2016: Implications for Fire Prevention. Disaster Prevention and Management: An International Journal, 28(2), 201–215.

    Article  Google Scholar 

  46. Vasiliauskas, D., & Beconytė, G. (2015). Spatial analysis of fires in Vilnius City in 2010–2012. Geodesy and Cartography, 41(1), 25–30.

    Article  Google Scholar 

  47. Xia, Z., Li, H., Chen, Y., & Yu, W. (2019). Detecting urban fire high-risk regions using colocation pattern measures. Sustainable cities and society, 49, 101607.

    Article  Google Scholar 

  48. Noori, S., Mohammadi, A., Miguel Ferreira, T., Ghaffari Gilandeh, A., & Mirahmadzadeh Ardabili, S. J. (2023). Modelling and Mapping Urban Vulnerability Index against potential structural fire-related risks: An Integrated GIS-MCDM Approach. Fire, 6(3), 107.

    Article  Google Scholar 

  49. Wong, D. W. (2009). Modifiable Areal Unit Problem. Pp. 169–74 in International Encyclopedia of Human Geography, edited by R. Kitchin and N. Thrift. Oxford: Elsevier.

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Behzad Kiani.

Ethics declarations

Conflict of interest

The Authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barati Jozan, M., Mohammadi, A., Lotfata, A. et al. Spatio-temporal analysis of fire incidences in urban context: the case study of Mashhad, Iran. Spat. Inf. Res. 32, 47–61 (2024). https://doi.org/10.1007/s41324-023-00540-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-023-00540-2

Keywords

Navigation