Skip to main content
Log in

A crop rotation model for Marinduque, Philippines

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

Crop production faces an increasing threat due to anthropogenic activities and natural hazards. Crop rotation is a tool that can address these issues in crop production. This study proposes an optimization model that generates a crop rotation plan using spatiotemporal suitability scores given a set of crops, with an objective to maximize the total suitability of the assignment of crops while satisfying principles of crop rotation such as suitability threshold and crop succession requirements. Biophysical and climatic characteristic data from Marinduque, Philippines, with upland rice, corn, and mungbean as crops, were used to validate the model. The results show that with a minimum suitability threshold of 0.6, an optimal crop rotation plan for one annual cycle included corn and mungbean for one (May to October) and two (June to August, September to November) cropping periods, respectively. Throughout each cropping period, the corn and mungbean will cover 46.64% and 10.33% of the arable land, respectively. Based on the crop rotation plan, corn can be cultivated along the shorelines except in the southeast area of the island, where mungbean is more suitable. The results suggest that other crops should be considered since the current set of crops leaves 43% of the arable land unutilized. This model can be used for any combination of crops and other spatiotemporal suitability factors, allowing it to be applied to different sites and scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

The codes which were executed in Spyder IDE and solved using Gurobi 9.1 can be found online at https://github.com/SonEmer/Crop-Rotation/blob/main/Crop-Rotation.py.

References

  1. Mekuria, M. (2018). The link between agricultural production and population dynamics in Ethiopia: a review. Advances in Plants Agriculture Research. https://doi.org/10.15406/apar.2018.08.00336

    Article  Google Scholar 

  2. Ray, D. K., & Foley, J. A. (2013). Increasing global crop harvest frequency: Recent trends and future directions. Environmental Research Letters. https://doi.org/10.1088/1748-9326/8/4/044041

    Article  Google Scholar 

  3. Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE. https://doi.org/10.1371/journal.pone.0066428

    Article  Google Scholar 

  4. Stehfest, E., Heistermann, M., Priess, J. A., Ojima, D. S., & Alcamo, J. (2007). Simulation of global crop production with the ecosystem model DayCent. Ecological Modelling. https://doi.org/10.1016/j.ecolmodel.2007.06.028

    Article  Google Scholar 

  5. Lobell, D. B., & Gourdji, S. M. (2012). The influence of climate change on global crop productivity. Plant Physiology. https://doi.org/10.1104/pp.112.208298

    Article  Google Scholar 

  6. Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., & Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science, 319(5863), 607–610. https://doi.org/10.1126/science.1152339

    Article  Google Scholar 

  7. Cong, R. G., & Brady, M. (2012). The interdependence between rainfall and temperature: Copula analyses. The Scientific World Journal. https://doi.org/10.1100/2012/405675

    Article  Google Scholar 

  8. Wolf, J., Bindraban, P. S., Luijten, J. C., & Vleeshouwers, L. M. (2003). Exploratory study on the land area required for global food supply and the potential global production of bioenergy. Agricultural Systems. https://doi.org/10.1016/S0308-521X(02)00077-X

    Article  Google Scholar 

  9. Popp, J., Petõ, K., & Nagy, J. (2013). Pesticide productivity and food security: A review. Agronomy for Sustainable Development. https://doi.org/10.1007/s13593-012-0105-x

    Article  Google Scholar 

  10. Khan, S., Hanjra, M. A., & Mu, J. (2009). Water management and crop production for food security in China: A review. Agricultural Water Management. https://doi.org/10.1016/j.agwat.2008.09.022

    Article  Google Scholar 

  11. Balmford, A., Green, R. E., & Scharlemann, J. P. (2005). Sparing land for nature: Exploring the potential impact of changes in agricultural yield on the area needed for crop production. Global Change Biology. https://doi.org/10.1111/j.1365-2486.2005.001035.x

    Article  Google Scholar 

  12. Knox, J. W., Kay, M. G., & Weatherhead, E. K. (2012). Water regulation, crop production, and agricultural water management-understanding armer perspectives on irrigation efficiency. Agricultural Water Management. https://doi.org/10.1016/j.agwat.2011.06.007

    Article  Google Scholar 

  13. Ali, M. H., & Talukder, M. S. (2008). Increasing water productivity in crop production-A synthesis. Agricultural Water Management. https://doi.org/10.1016/j.agwat.2008.06.008

    Article  Google Scholar 

  14. Bethlenfalvay, G. J. (2015). Mycorrhizae and crop productivity. Mycorrhizae in Sustainable Agriculture, 54, 1–27. https://doi.org/10.2134/asaspecpub54.c1

    Article  Google Scholar 

  15. Mandal, K. G., Misra, A. K., Hati, K. M., Bandyopadhyay, K. K., & Ghosh, P. K. (2004). Rice residue- management options and effects on soil properties and crop productivity. Journal of Food Agriculture and Environment, 2(January), 224–231.

    Google Scholar 

  16. Ogle, S. M., Swan, A., & Paustian, K. (2012). No-till management impacts on crop productivity, carbon input and soil carbon sequestration. Agriculture, Ecosystems and Environment. https://doi.org/10.1016/j.agee.2011.12.010

    Article  Google Scholar 

  17. Fageria, N. K., Baligar, V. C., & Bailey, B. A. (2005). Role of cover crops in improving soil and row crop productivity. Communications in Soil Science and Plant Analysis. https://doi.org/10.1080/00103620500303939

    Article  Google Scholar 

  18. Lal, R., & Moldenhauer, W. C. (1987). Effects of soil erosion on crop productivity. Critical Reviews in Plant Sciences. https://doi.org/10.1080/07352688709382244

    Article  Google Scholar 

  19. Ponce, E. R. (2004). Special issue in agriculture. Philippine Institute for Development Studies, Bureau of Agricultural Research. Retrieved from https://dirp3.pids.gov.ph/ris/books/pidsbk04-agriculture.pdf

  20. Mohler, C. (2009). Crop Rotation on Organic Farms: A Planning Manual. Natural Resource, Agriculture and Engineering Service (NRAES) Cooperative Extension.

    Google Scholar 

  21. Brankatschk, G., & Finkbeiner, M. (2015). Modeling crop rotation in agricultural LCAs—Challenges and potential solutions. Agricultural Systems. https://doi.org/10.1016/j.agsy.2015.05.008

    Article  Google Scholar 

  22. Forrester, R. J., Rodriguez, M., Forrester, R., & Rodriguez, M. (2018). An integer programming approach to crop rotation planning at an organic farm. The UMAP Journal, 38(4), 5–25. Retrieved from http://www.comap.com/product/?idx=1617

  23. Alfandari, L., Lemalade, J. L., Nagih, A., & Plateau, G. (2011). A MIP flow model for crop-rotation planning in a context of forest sustainable development. Annals of Operations Research, 190(1), 149–164. https://doi.org/10.1007/s10479-009-0553-0

    Article  Google Scholar 

  24. Dos Santos, L. M. R., Michelon, P., Arenales, M. N., & Santos, R. H. S. (2011). Crop rotation scheduling with adjacency constraints. IDEAS. https://doi.org/10.1007/s10479-008-0478-z

    Article  Google Scholar 

  25. de Oliveira, D. G., Delgado, A. R. S., Ventura, S. D., Cruz, M. D., & Rodrigues, P. C. P. (2019). Binary programming for the simulation of crop rotation and animal transit in an integrated crop-livestock system. Revista Ciencia Agronomica. https://doi.org/10.5935/1806-6690.20190015

    Article  Google Scholar 

  26. Bargués-Ribera, M., & Gokhale, C. S. (2020). Eco-evolutionary agriculture: Host-pathogen dynamics in crop rotations. PLoS Computational Biology. https://doi.org/10.1371/journal.pcbi.1007546

    Article  Google Scholar 

  27. Maqrot, S., de Givry, S., Quesnel, G., & Tchamitchian, M. (2017). A Mixed Integer Programming Reformulation of the Mixed Fruit-Vegetable Crop Allocation Problem. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer. https://doi.org/10.1007/978-3-319-60045-1

    Book  Google Scholar 

  28. Filippi, C., Mansini, R., & Stevanato, E. (2017). Mixed integer linear programming models for optimal crop selection. Computers and Operations Research. https://doi.org/10.1016/j.cor.2016.12.004

    Article  Google Scholar 

  29. Kharisma, A., & Perdana, T. (2019). Linear programming model for vegetable crop rotation planning: A case study. International Journal of Agricultural Resources, Governance and Ecology. https://doi.org/10.1504/IJARGE.2019.104203

    Article  Google Scholar 

  30. Nevo, A., & Amir, I. (1991). CROPLOT: An expert system for determining the suitability of crops to plots. Agricultural Systems, 37(3), 225–241. https://doi.org/10.1016/0308-521X(91)90034-8

    Article  Google Scholar 

  31. Bailey, L. H. (1907). Cyclopedia of American Agriculture. Philippine Institute for Development Studies, Bureau of Agricultural Research.

    Google Scholar 

  32. Salvacion, A. R. (2017). Fuzzy logic approach to explore climatic limitation on corn production in the Philippines. Spatial Information Research. https://doi.org/10.1007/s41324-017-0109-3

    Article  Google Scholar 

  33. Dury, J., Schaller, N., Garcia, F., Reynaud, A., & Bergez, J. E. (2011). Models to support cropping plan and crop rotation decisions. A view. Agronomy for Sustainable Development, 32(2), 567–580. https://doi.org/10.1007/s13593-011-0037-x

    Article  Google Scholar 

  34. Sarker, R., & Quaddus, M. (2002). Modelling a nationwide crop planning problem using a multiple criteria decision making tool. Computers & Industrial Engineering, 42(2), 541–553. https://doi.org/10.1016/S0360-8352(02)00022-0

    Article  Google Scholar 

  35. Salvacion, A. R., & Magcale-Macandog, D. B. (2015). Spatial analysis of human population distribution and growth in Marinduque Island, Philippines. Journal of Marine and Island Cultures. https://doi.org/10.1016/j.imic.2015.06.003

    Article  Google Scholar 

  36. Salvacion, A. R., & Martin, A. A. (2016). Climate change impact on corn suitability in Isabela province, Philippines. Journal of Crop Science and Biotechnology. https://doi.org/10.1007/s12892-016-0019-2

    Article  Google Scholar 

  37. Salvacion, A. (2017). Exploring determinants of child malnutrition in Marinduque Island Philippines. Human Ecology. https://doi.org/10.1007/s10745-017-9951-0

    Article  Google Scholar 

  38. Salvacion, A. R. (2020). Spatial pattern and determinants of village level poverty in Marinduque Island, Philippines. GeoJournal. https://doi.org/10.1007/s10708-018-9944-6

    Article  Google Scholar 

  39. Salvacion, A. R. (2021). Mapping land limitations for agricultural land use planning using fuzzy logic approach: a case study for Marinduque Island, Philippines. GeoJournal. https://doi.org/10.1007/s10708-019-10103-4

    Article  Google Scholar 

  40. Leyso, N. L. C., & Palatino, M. C. (2020). Detecting local clusters of under-5 malnutrition in the province of Marinduque, Philippines using spatial scan statistic. Nutrition and Metabolic Insights, 13, 117863882094067. https://doi.org/10.1177/1178638820940670

    Article  Google Scholar 

  41. Okabe, M. (2019). Inferences and descriptive analyses on education, livelihoods, and rural poverty through fieldwork and tailored household survey in Marinduque, the Philippines. Application/pdf.

  42. Sys, C., van Ranst, E., Debayeye, J., & Beernaert, F. (1993). Land Evaluation part III: Crop requirements. Agricultural Publications. General Administration for Development Cooperation, Belgium. Retrieved from https://www.researchgate.net/publication/324330469. Land Evaluation Part 3 Crop Requirements

  43. Arraudeau, M. A. & Vergara, B. S. (1988). A Farmer’s Primer on Growing Upland Rice.

  44. The World Vegetable Center (2016). Mungbean seed production training manual. Retrieved from https://avrdc.org/download/publications/manuals/Mungbean-seed-productionSouth-Asia.pdf

  45. Gerpacio, R. V., Labios, J. D., Labios, R. V., & Diangkinay, E. I. (2004). Maize in the Philippines: Production Systems, Constraints, and Research Priorities. Retrieved from https://ageconsearch.umn.edu/record/7650/files/mp04ge01.pdf

  46. Salvacion, A. R. (2017). Fuzzy logic approach to explore climatic limitation on corn production in the Philippines. Spatial Information Research, 25(3), 421–429. https://doi.org/10.1007/s41324-017-0109-3

    Article  Google Scholar 

  47. Province of Marinduque. (n.d.). Agriculture, Fishery and Livestock. Province of Marinduque Official Website. Retrieved January 18, 2022, from https://marinduque.gov.ph/agriculture-fishery-and-livestock/#:~:text=For%202020%20vegetable%20production%20generated,by%20farmers%20in%20the%20barangays.

  48. Tahat, M. M., Alananbeh, K. M., Othman, Y. A., & Leskovar, D. I. (2020). Soil health and sustainable agriculture. Sustainability. https://doi.org/10.3390/su12124859

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the design and implementation of the research, analysis of the results, and writing of the manuscript.

Corresponding author

Correspondence to Emerson R. Rico.

Ethics declarations

Competing interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rico, E.R., Lutero, D.S., Nazareno, A.L. et al. A crop rotation model for Marinduque, Philippines. Spat. Inf. Res. 30, 461–467 (2022). https://doi.org/10.1007/s41324-022-00435-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-022-00435-8

Keywords

Navigation