Skip to main content
Log in

Multiple indices based drought analysis by using long term climatic variables over a part of Koel river basin, India

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

The present study demonstrates changes in vegetation pattern and climatic variability in past years in the parts of Koel basin in Jharkhand state of India by considering the spatial climatic variability, NDVI anomaly and satellite based drought indices viz Vegetation Condition Index (VCI), Temperature Condition Index (TCI) and Vegetation Health Index (VHI). Least square statistical method has been used for assessment of long term climatic fluctuation of major four climatic parameters viz maximum temperature of summer season, minimum temperature of winter season, rainfall of monsoon season, and solar radiation of Rabi and kharif season. Analysis of climate extremes has been done for 26 locations in the study area and then interpolated spatially in Geographical Information System platform. Long term NDVI anomaly shows adverse effect of climate extreme in past 20 years in the study area. The climatic variability exhibits that average maximum temperature during 1979–2017 fluctuates with an increase of 0.50–0.81 °C contrary to a decrease of 0.32–0.15 °C in various parts of study area. Similarly rainfall fluctuates with a decrease of 26–90 mm contrary to an increase of 19–230 mm. Drought prone zones as delineated from spatial overlaying map of VCI, TCI and VHI indicated value from 23 to 55. Major part of the study area severely affected by drought facing water scarcity and mediocre vegetation condition. These areas need proper planning and soil moisture management to overcome the recurrent drought conditions perceived in upcoming years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Data from Government of Jharkhand climatic Report http://www.jharkhand.gov.in/web/guest/Resources&Environment. Accessed 15.07.2015.

  2. Climate Variability is defined as variations in the mean state and other statistics of the climate on all temporal and spatial scales, beyond individual weather events.

References

  1. Bates, B. C., Kundzewicz, Z. W., Wu, S., & Palutikof, J. (2008). Climate change and water. Intergovermental Panel on Climate Change Secretariat.

  2. Haskett, J. D., Pachepsky, Y. A., & Acock, B. (2000). Effect of climate and atmospheric change on soybean water stress: A study of Iowa. Ecological Modelling,135(2–3), 265–277.

    Article  Google Scholar 

  3. Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, T., Gregory, J. M., et al. (2007). Global climate projections. In Climate change 2007, The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernment channel on climate change (pp. 746–845). UK and New York, NY, USA: Cambridge University Press.

  4. Babalola, O. S., & Akinsanola, A. A. (2016). Change detection in land surface temperature and land use land cover over Lagos Metropolis, Nigeria. Journal of Remote Sensing & GIS. https://doi.org/10.4172/2469-4134.1000171.

    Article  Google Scholar 

  5. Chibuike, E. M., Ibukun, A. O., Abbas, A., & Kunda, J. J. (2018). Assessment of green parks cooling effect on Abuja urban microclimate using geospatial techniques. Remote Sensing Applications: Society and Environment,11, 11–21.

    Article  Google Scholar 

  6. Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., et al. (2013). Climate change 2013: The physical science basis. Cambridge: Cambridge University Press Cambridge.

    Google Scholar 

  7. Kumar, K. R., Kumar, K. K., & Pant, G. B. (1994). Diurnal asymmetry of surface temperature trends over India. Geophysical Research Letters,21(8), 677–680.

    Article  Google Scholar 

  8. Kothyari, U. C., & Singh, V. P. (1996). Rainfall and temperature trends in India. Hydrological Processes,10(3), 357–372.

    Article  Google Scholar 

  9. Pandey, S., Pandey, A. C., Nathawat, M. S., Kumar, M., & Mahanti, N. C. (2012). Drought hazard assessment using geoinformatics over parts of Chotanagpur plateau region, Jharkhand, India. Natural Hazards,63(2), 279–303.

    Article  Google Scholar 

  10. Adeyeri, O. E., Akinsanola, A. A., & Ishola, K. A. (2017). Investigating surface urban heat island characteristics over Abuja, Nigeria: Relationship between land surface temperature and multiple vegetation indices. Remote Sensing Applications: Society and Environment,7, 57–68.

    Article  Google Scholar 

  11. Bhuiyan, C. (2004). Various drought indices for monitoring drought condition in Aravalli terrain of India. In Proceedings of the XXth ISPRS congress, Istanbul, Turkey (pp. 12–23).

  12. Ogunjobi, K. O., Adamu, Y., Akinsanola, A. A., & Orimoloye, I. R. (2018). Spatio-temporal analysis of land use dynamics and its potential indications on land surface temperature in Sokoto Metropolis, Nigeria. Royal Society Open Science,5(12), 180661.

    Article  Google Scholar 

  13. Sruthi, S., & Aslam, M. M. (2015). Agricultural drought analysis using the NDVI and land surface temperature data; a case study of Raichur district. Aquatic Procedia,4, 1258–1264.

    Article  Google Scholar 

  14. Kogan, F. N. (1997). Global drought watch from space. Bulletin of the American Meteorological Society,78(4), 621–636.

    Article  Google Scholar 

  15. Kogan, F. N. (2000). Contribution of remote sensing to drought early warning. In Early warning systems for drought preparedness and drought management (pp. 75–87).

  16. Parthasarathy, B., Kumar, K. R., & Munot, A. A. (1993). Homogeneous Indian monsoon rainfall: Variability and prediction. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences,102(1), 121–155.

    Google Scholar 

  17. Patra, P. K., Behera, S. K., Herman, J. R., Maksyutov, S., Akimoto, H., & Yamagata, Y. (2005). The Indian summer monsoon rainfall: Interplay of coupled dynamics, radiation and cloud microphysics. Atmospheric Chemistry and Physics,5(8), 2181–2188.

    Article  Google Scholar 

  18. Arora, M., Goel, N. K., & Singh, P. (2005). Evaluation of temperature trends over India/Evaluation de tendances de température en Inde. Hydrological Sciences Journal,50(1), 93.

    Article  Google Scholar 

  19. Feidas, H., Makrogiannis, T., & Bora-Senta, E. (2004). Trend analysis of air temperature time series in Greece and their relationship with circulation using surface and satellite data: 1955–2001. Theoretical and Applied Climatology,79(3–4), 185–208.

    Article  Google Scholar 

  20. Kothawale, D. R., Revadekar, J. V., & Kumar, K. R. (2010). Recent trends in pre-monsoon daily temperature extremes over India. Journal of Earth System Science,119(1), 51–65.

    Article  Google Scholar 

  21. Naidu, C. V., Rao, B. S., & Rao, D. B. (1999). Climatic trends and periodicities of annual rainfall over India. Meteorological Applications,6(4), 395–404.

    Article  Google Scholar 

  22. Ramesh, K. V., & Goswami, P. (2007). Reduction in temperature and spatial extent of the Indan summer monsoon. Geophysical Research Letters. https://doi.org/10.1029/2007GL031613.

    Article  Google Scholar 

  23. Roy, S. S., & Balling Jr, R. C. (2005). Analysis of trends in maximum and minimum temperature, diurnal temperature range, and cloud cover over India. Geophyscial Research Letters. https://doi.org/10.1029/2004GL022201.

    Article  Google Scholar 

  24. Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., & Xavier, P. K. (2006). Increasing trend of extreme rain events over India in a warming environment. Science,314(5804), 1442–1445.

    Article  Google Scholar 

  25. Tirkey, A. S., Ghosh, M., Pandey, A. C., & Shekhar, S. (2018). Assessment of climate extremes and its long term spatial variability over the Jharkhand state of India. The Egyptian Journal of Remote Sensing and Space Science,21(1), 49–63.

    Article  Google Scholar 

  26. Cruz, R. V. (2007). Asia. Climate change 2007: Impact, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change (pp. 469–506).

  27. Izrael, Y., Anokin, Y., & Eliseev, A. D. (1997). Final report of the Russian country study on climate problem, Russian federal service for hydro meteorology and environmental monitoring, Vol. 3, task 3: Vulnerability and adaptation a ssessments. Roshydromet, Moscow, Russia.

  28. Ramos, M. C., Balasch, J. C., & Martínez-Casasnovas, J. A. (2012). Seasonal temperature and precipitation variability during the last 60 years in a Mediterranean climate area of Northeastern Spain: A multivariate analysis. Theoretical and Applied Climatology,110(1–2), 35–53.

    Article  Google Scholar 

  29. Jhajharia, D., & Singh, V. P. (2011). Trends in temperature, diurnal temperature range and sunshine duration in Northeast India. International Journal of Climatology,31(9), 1353–1367.

    Article  Google Scholar 

  30. Dalezios, N. R., Blanta, A., Spyropoulos, N. V., & Tarquis, A. M. (2014). Risk identification of agricultural drought for sustainable agroecosystems. Natural Hazards and Earth System Sciences,14(9), 2435–2448.

    Article  Google Scholar 

  31. Kogan, F. (2002). World droughts in the new millennium from AVHRR-based vegetation health indices. Eos, Transactions American Geophysical Union,83(48), 557–563.

    Article  Google Scholar 

  32. Kogan, F. N. (1995). Application of vegetation index and brightness temperature for drought detection. Advances in Space Research,15(11), 91–100.

    Article  Google Scholar 

  33. Singh, R. P., Roy, S., & Kogan, F. (2003). Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. International Journal of Remote Sensing,24(22), 4393–4402.

    Article  Google Scholar 

  34. Minj, H. P. (2013). Social dimension of climate change on tribal societies of Jharkhand. International Journal of Social Science & Interdisciplinary Research,2(3), 34–41.

    Google Scholar 

  35. Haines, A., Kovats, R. S., Campbell-Lendrum, D., & Corvalán, C. (2006). Climate change and human health: Impacts, vulnerability, and mitigation. The Lancet,367(9528), 2101–2109.

    Article  Google Scholar 

  36. Burgess, R., Deschenes, O., Donaldson, D., & Greenstone, M. (2011). Weather and death in India (p. 19)., Manuscript Cambridge: Massachusetts Institute of Technology, Department of Economics.

    Google Scholar 

  37. Pandey, A., & Stuti, C. (2017). Geospatial technique for runoff estimation based on SCS–CN method in upper South Koel river basin of Jharkhand (India). International Journal of Hydrology,1(7), 00037.

    Article  Google Scholar 

  38. Sharma, S. K., Kansal, M. L., & Tyagi, A. (2015). Resource assessment and strategic planning for impovement of water supply to shimla city in India using geo-spatial technique. The Egyptian Journal of Remote Sensing and Space Science, 18, 85–97.

    Article  Google Scholar 

  39. Mondal, A., Khare, D., & Kundu, S. (2015). Spatial and temporal analysis of rainfall and temperature trend of India. Theoretical and Applied Climatology,122(1–2), 143–158.

    Article  Google Scholar 

  40. Su, B. D., Jiang, T., & Jin, W. B. (2006). Recent trends in observed temperature and precipitation extremes in the Yangtze River basin, China. Theoretical and Applied Climatology,83(1–4), 139–151.

    Article  Google Scholar 

  41. Subash, N., & Sikka, A. K. (2014). Trend analysis of rainfall and temperature and its relationship over India. Theoretical and Applied Climatology,117(3–4), 449–462.

    Article  Google Scholar 

  42. Gupta, K. R., & Gupta, M. P. (2017). Business statistics. Chennai: Atlantic Publishers & Distributors.

    Google Scholar 

  43. Anyamba, A., & Tucker, C. J. (2012). Historical prespective of AVHRR NDVI and vegetation drought monitoring. Remote Sensing of Drought: Innovative Monitoring Approaches. http://digitalcommons.unl.edu/nsapub/2017.

  44. Vaani, N., & Porchelvan, P. (2018). Monitoring of agricultural drought using fortnightly variation of vegetation condition index (VCI) for the state of Tamil Nadu, India. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. https://doi.org/10.5194/isprs-archives-XLII-4-W9-159-2018.

  45. Amalo, L. F., & Hidayat, R. (2017). Comparison between remote-sensing-based drought indices in east Java. IOP Conference Series: Earth and Environmental Science,54, 012009.

    Article  Google Scholar 

  46. Rawat, J. S., & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science,18(1), 77–84.

    Article  Google Scholar 

  47. Riebsame, W. E., Meyer, W. B., & Turner, B. L. (1994). Modeling land use and cover as part of global environmental change. Climatic Change,28(1–2), 45–64.

    Article  Google Scholar 

  48. Dash, S. K., Jenamani, R. K., Kalsi, S. R., & Panda, S. K. (2007). Some evidence of climate change in twentieth-century India. Climatic Change,85(3–4), 299–321.

    Article  Google Scholar 

  49. El Bastawesy, M., Gabr, S., & Mohamed, I. (2015). Assessment of hydrological changes in the Nile River due to the construction of Renaissance Dam in Ethiopia. The Egyptian Journal of Remote Sensing and Space Science,18(1), 65–75.

    Article  Google Scholar 

  50. Kumar, K. K., Rajagopalan, B., Hoerling, M., Bates, G., & Cane, M. (2006). Unraveling the mystery of Indian monsoon failure during El Niño. Science,314(5796), 115–119.

    Article  Google Scholar 

  51. Bert, F. E., Laciana, C. E., Podestá, G. P., Satorre, E. H., & Menéndez, A. N. (2007). Sensitivity of CERES-Maize simulated yields to uncertainty in soil properties and daily solar radiation. Agricultural Systems,94(2), 141–150.

    Article  Google Scholar 

  52. Wadood, A., & Kumari, P. (2009). Impact of climate change on Jharkhand agriculture: Mitigation and adoption. In Workshop proceedings ISPRS Ahmedabad.

Download references

Acknowledgements

The authors would like to thank U.S. Geological Survey (USGS) for providing satellite data and MODIS archive used in this research for multiple drought analysis. And also would like to acknowledge National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) (globalweather.tamu.edu) and Indian Metrological Department for providing climatic data for the study. First author acknowledges the receipt of financial support under the Fellowship DST INSPIRE (DST/INSPIRE/03/2016/002057) from Ministry of Science and Technology and Department of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Chandra Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3686 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, S., Pandey, A.C. Multiple indices based drought analysis by using long term climatic variables over a part of Koel river basin, India. Spat. Inf. Res. 28, 273–285 (2020). https://doi.org/10.1007/s41324-019-00287-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-019-00287-9

Keywords

Navigation