Spatial Information Research

, Volume 26, Issue 3, pp 253–259 | Cite as

Climate change impact analysis on watershed using QSWAT

  • N. Nageswara Reddy
  • K. Venkata Reddy
  • J. Sri Lakshmi Sesha Vani
  • Prasad Daggupati
  • Raghavan Srinivasan


This study focuses on analysis of future climate change impacts on West Nishnabotna Watershed, using climate model data and an open source hydrological model—Soil and Water Assessment Tool (SWAT), which is run in Quantum Geographical Information System(QGIS) environment. The data required to simulate hydrological processes using SWAT plugin in QGIS (QSWAT) are Digital Elevation Model, land use/landcover map, soil map, slope map and climate data of the study area. The required climate parameters like maximum temperature, minimum temperature and precipitation are obtained from North American Regional Climate Change Assessment Program climate model database which are bias corrected for the study area using linear scaling method. SWAT model is setup using observed climate and the model calibration and validation is performed using SWAT Calibration and Uncertainty Program (SWAT-CUP). Simulations are run for historic (1971–1999) and future (2041–2069) climate conditions for the stream flow prediction. The climate change impact analysis like anomalies and trends in the hydrological regime of the watershed are carried out based on QSWAT simulation results.


Climate change Watershed QSWAT Bias correction Hydrological anomalies 



Part of the work presented in this paper is carried out at Texas A&M University, College Station by the Second Author (Venkata Reddy K) as part of the Raman fellowship provided by the Government of India. We wish to thank Dr. Seth McGinnis and other scientists of North American Regional Climate Change Assessment Program (NARCCAP) for providing the data used in this paper.

Supplementary material

41324_2017_159_MOESM1_ESM.tif (38.7 mb)
Supplementary material 1 (TIFF 39622 kb)
41324_2017_159_MOESM2_ESM.eps (43 kb)
Supplementary material 2 (EPS 42 kb)
41324_2017_159_MOESM3_ESM.eps (39 kb)
Supplementary material 3 (EPS 38 kb)
41324_2017_159_MOESM4_ESM.tiff (132.7 mb)
Supplementary material 4 (TIFF 135915 kb)
41324_2017_159_MOESM5_ESM.tiff (132.7 mb)
Supplementary material 5 (TIFF 135915 kb)
41324_2017_159_MOESM6_ESM.tiff (132.7 mb)
Supplementary material 6 (TIFF 135915 kb)
41324_2017_159_MOESM7_ESM.tiff (132.7 mb)
Supplementary material 7 (TIFF 135915 kb)


  1. 1.
    Chien, H., Yeh, P. J. F., & Knouft, J. H. (2013). Modeling the potential impacts of climate change on streamflow in agricultural watersheds of the Midwestern United States. Journal of Hydrology, 491, 73–88.CrossRefGoogle Scholar
  2. 2.
    Erturk, A. (2012). Managing the effects of the climate change on water resources and watershed ecology. In M. V. Kumarasamy (Ed.), Studies on Water Management Issues. London: InTech.Google Scholar
  3. 3.
    Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: Model development. Journal of the American Water Resources Association, 34(1), 73–89.CrossRefGoogle Scholar
  4. 4.
    Bicknell, B. R., Imhoff, J. C., Kittle, J. L., Jr., Jobes, T. H., Donigian, A. S., Jr., & Johanson, R. (2001). Hydrological simulation program–fortran: HSPF, version 12 user’s manual. Mountain View, California: AQUA TERRA Consultants.Google Scholar
  5. 5.
    Downer, C. W., & Ogden, F. L. (2004). GSSHA: Model to simulate diverse stream flow producing processes. Journal of Hydrologic Engineering, 9(3), 161–174.CrossRefGoogle Scholar
  6. 6.
    Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The soil and water assessment tool: Historical development, applications, and future research directions. Transactions of the American Society of Agricultural and Biological Engineers, 50(4), 1211–1250.Google Scholar
  7. 7.
    Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., et al. (2012). SWAT: model use, calibration, and validation. American Society of Agricultural and Biological Engineers, 55(4), 1491–1508. ISSN 2151-0032.Google Scholar
  8. 8.
    Dile, Y. T., Daggupati, P., George, C., Srinivasan, R., & Arnold, J. (2016). Introducing a new open source GIS user interface for the SWAT model. Environmental Modelling and Software, 85, 129–138.CrossRefGoogle Scholar
  9. 9.
    Beven, K., & Binley, A. (1992). The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 6(3), 279–298.CrossRefGoogle Scholar
  10. 10.
    Kuczera, G., & Parent, E. (1998). Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm. Journal of Hydrology, 211(1), 69–85.CrossRefGoogle Scholar
  11. 11.
    van Griensven, A., & Meixner, T. (2006). Methods to quantify and identify the sources of uncertainty for river basin water quality models. Water Science and Technology, 53(1), 51–59.CrossRefGoogle Scholar
  12. 12.
    Abbaspour, K. C. (2007). User manual for SWAT-CUP, SWAT calibration and uncertainty analysis programs. Duebendorf, Switzerland: Swiss Federal Institute of Aquatic Science and Technology, Eawag.Google Scholar
  13. 13.
    Daggupati, P., Deb, D., Srinivasan, R., Yeganantham, D., Mehta, V. M., & Rosenberg, N. J. (2016). Large-scale fine-resolution hydrological modeling using parameter regionalization in the Missouri River Basin. Journal of the American Water Resources Association, 52(3), 648–666.CrossRefGoogle Scholar
  14. 14.
    Mehta, V. M., Rosenberg, N. J., & Mendoza, K. (2011). Simulated impacts of three decadal climate variability phenomena on water yields in the Missouri River Basin. Journal of the American Water Resources Association, 47(1), 126–135.CrossRefGoogle Scholar
  15. 15.
    Mearns, L. O., Gutowski, W., Jones, R., Leung, R., McGinnis, S., Nunes, A., et al. (2009). A regional climate change assessment program for North America. Eos, Transactions American Geophysical Union, 90(36), 311.CrossRefGoogle Scholar
  16. 16.
    Lenderink, G., Buishand, A., & Deursen, W. V. (2007). Estimates of future discharges of the river Rhine using two scenario methodologies: Direct versus delta approach. Hydrology and Earth System Sciences, 11(3), 1145–1159.CrossRefGoogle Scholar
  17. 17.
    Ines, A. V. M., & Hansen, J. W. (2006). Bias correction of daily GCM rainfall for crop simulation studies. Agricultural and Forest Meteorology, 138(1–4), 44–53.CrossRefGoogle Scholar
  18. 18.
    Teutschbein, C., & Seibert, J. (2010). Regional climate models for hydrological impact studies at the catchment scale: A review of recent modeling strategies: Regional climate models for hydrological impact studies. Geography Compass, 7, 834–860.CrossRefGoogle Scholar
  19. 19.
    Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Binger, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the American Society of Agricultural and Biological Engineers, 50(3), 885–900.Google Scholar

Copyright information

© Korean Spatial Information Society 2017

Authors and Affiliations

  1. 1.National Institute of TechnologyWarangalIndia
  2. 2.Department of Water Resources Engineering, School of EngineeringUniversity of GuelphGuelphCanada
  3. 3.Department of Ecosystem Science and ManagementTexas A&M UniversityCollege StationUSA

Personalised recommendations