Skip to main content

Advertisement

Log in

Evaluation of algal absorbed CO2 sequestration techniques: a review

  • Review Paper
  • Published:
Euro-Mediterranean Journal for Environmental Integration Aims and scope Submit manuscript

Abstract

The lightening of structures is a constant preoccupation of the mobility industries and particularly the automotive industry. For vehicles with thermal propulsion, this quest for lightening is justified by the need to reduce fossil fuel consumption, and consequently the emissions of CO2 and harmful particles. The increase in the amount of CO2 in the world has greatly disturbed the functioning of the earth. Important projects are being implemented worldwide to reduce the emissions of this gas, but no solution has yet been adopted and no strategy is currently recognized. To cope with this increase of CO2 in our environment, effective and reliable carbon sequestration technologies are urgently needed. Biological CO2 sequestration using algae is currently one of the most efficient and cost-effective of the various CO2 sequestration methods. Indeed, algae are widely exploitable as a CO2 storage medium and can be used to produce biofuels and many value-added products. In this study, we review the state of recent research on the use of microalgae in CO2 sequestration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Abrouki Y, Mabrouki J, Anouzla A, Rifi SK, Zahiri Y, Nehhal S, Souabi S (2021) Optimization and modeling of a fixed-bed biosorption of textile dye using agricultural biomass from the Moroccan Sahara. Desalin Water Treat 240: 144–151

  • Alami AH, Abdelkareem MA, Faraj M, Aokal K, Al Safarini N (2020) Titanium dioxide-coated nickel foam photoelectrodes for direct urea fuel cell applications. Energy 208: 118253

  • Alami AH, Alasad S, Ali M, Alshamsi M (2021) Investigating algae for CO2 capture and accumulation and simultaneous production of biomass for biodiesel production. Sci Total Environ 759:143529. https://doi.org/10.1016/j.scitotenv.2020.143529.

  • Al-Ghussain L (2019) Global warming: review on driving forces and mitigation. Environ Prog Sustain Energy 38(1):13–21

    Article  Google Scholar 

  • André R, Pacheco R, Bourbon M, Serralheiro ML (2021) Brown algae potential as a functional food against hypercholesterolemia. Foods 10(2):234

    Article  Google Scholar 

  • Andrew RM (2019) Global CO2 emissions from cement production, 1928–2018. Earth Syst Sci Data 11(4):1675–1710. https://doi.org/10.5194/essd-11-1675-2019

    Article  Google Scholar 

  • Anshelm J, Hansson A (2014) The last chance to save the planet? An analysis of the geoengineering advocacy discourse in the public debate. Environ Human 5(1):101–123

    Article  Google Scholar 

  • Arora V, Saran RK, Kumar R, Yadav S (2019) Separation and sequestration of CO2 in geological formations. Mater Sci Energy Technol 2(3):647–656

    Google Scholar 

  • Ashokkumar V, Chen W-H, Ngamcharussrivichai C, Agila E, Ani FN (2019) Potential of sustainable bioenergy production from Synechocystis sp. cultivated in wastewater at large scale—a low cost biorefinery approach. Energy Convers Manage 186:188–199. https://doi.org/10.1016/j.enconman.2019.02.056

    Article  Google Scholar 

  • Azoulay K, Bencheikh I, Benchrifa M, Baaziz MB, Mabrouki J (2023a) Adsorption of inorganic and organic pollutants in urban wastewater treatment using pine wood activated carbon. In: Advanced Technology for Smart Environment and Energy, 221–231

  • Azoulay K, Bencheikh I, Mabrouki J, Samghouli N, Moufti A, Dahchour A, El Hajjaji S (2023b) Adsorption mechanisms of azo dyes binary mixture onto different raw palm wastes. Int J Environ Anal Chem 103(7):1633–1652

    Article  Google Scholar 

  • Azrour M, Mabrouki J, Fattah G, Guezzaz A, Aziz F (2021) Machine learning algorithms for efficient water quality prediction. Model Earth Syst Environ. https://doi.org/10.1007/s40808-021-01266-6

    Article  Google Scholar 

  • Babu P, Ong HWN, Linga P (2016) A systematic kinetic study to evaluate the effect of tetrahydrofuran on the clathrate process for pre-combustion capture of carbon dioxide. Energy 94:431–442. https://doi.org/10.1016/j.energy.2015.11.009

    Article  Google Scholar 

  • Ball J, Kouakou J, Rankou B, Taylor J, Zabihian F (2016) Preliminary feasibility study of a bubble column CO2 capture unit utilizing microalgae. In: Proceedings of the 2016 ASEE North Central Section Conference. American Society for Engineering Education

  • Basheer S, et al. (2020) Microalgae in human health and medicine. In: Microalgae biotechnology for food, health and high value products, Springer, pp. 149–174.

  • Bassham JA, Calvin M (1960) The path of carbon in photosynthesis. In: Die CO2-Assimilation/The Assimilation of Carbon Dioxide, Springer, pp. 884–922.

  • Bencheikh I, Mabrouki J, Azoulay K, Moufti A, El Hajjaji S (2020) Predictive analytics and optimization of wastewater treatment efficiency using statistic approach. Big Data Netw Technol 3:310–319

    Article  Google Scholar 

  • Bencheikh I, Azoulay K, Mabrouki J, El Hajjaji S, Moufti A, Labjar N (2021) The use and the performance of chemically treated artichoke leaves for textile industrial effluents treatment. Chem Data Collect 31:100597

    Article  Google Scholar 

  • Benchrifa M, Mabrouki J (2022) Simulation, sizing, economic evaluation and environmental impact assessment of a photovoltaic power plant for the electrification of an establishment. Adv Build Energy Res 16(6): 736–753

  • Benchrifa M, Mabrouki J, Elouardi M, Azrour M, Tadili R (2023a) Detailed study of dimensioning and simulating a grid-connected PV power station and analysis of its environmental and economic effect, case study. Model Earth Syst Environ 9(1):53–61

    Article  Google Scholar 

  • Benchrifa M, Elouardi M, Fattah G, Mabrouki J, Tadili R (2023b) Identification, simulation and modeling of the main power losses of a photovoltaic installation and use of the internet of things to minimize system losses. In: Advanced Technology for Smart Environment and Energy, 49–60

  • Benchrifa M, Azoulay K, Bencheikh I, Mabrouki J, Tadili R, Ihoume I, Daoudi M (2023c) Modelling and simulating the effect of irradiation variation on the behavior of a photovoltaic cell and its influence on the maximum power point. In: Advanced Technology for Smart Environment and Energy, 105–116

  • Boot-Handford ME et al (2014) Carbon capture and storage update. Energy Environ Sci 7(1):130–189. https://doi.org/10.1039/C3EE42350F

    Article  Google Scholar 

  • Camacho F, Macedo A, Malcata F (2019) Potential industrial applications and commercialization of microalgae in the functional food and feed industries: a short review. Mar Drugs 17(6):312

    Article  Google Scholar 

  • Chauhan DS, Goswami G, Dineshbabu G, Palabhanvi B, Das D (2020) Evaluation and optimization of feedstock quality for direct conversion of microalga Chlorella sp. FC2 IITG into biodiesel via supercritical methanol transesterification. Biomass Convers Biorefin 10(2):339–349

    Article  Google Scholar 

  • Chen R, Liu Y, Liao W (2016) Using an environmentally friendly process combining electrocoagulation and algal cultivation to treat high-strength wastewater. Algal Res 16:330–337

    Article  Google Scholar 

  • Chi Z, O’Fallon JV, Chen S (2011) Bicarbonate produced from carbon capture for algae culture. Trends Biotechnol 29(11):537–541

    Article  Google Scholar 

  • Cordier C, Guyomard K, Stavrakakis C, Sauvade P, Coelho F, Moulin P (2020) Culture of microalgae with ultrafiltered seawater: a feasibility study. SciMedicine J 2(2):56–62

    Article  Google Scholar 

  • Del Mondo A, Smerilli A, Sané E, Sansone C, Brunet C (2020) Challenging microalgal vitamins for human health. Microb Cell Fact 19(1):1–23

    Google Scholar 

  • Depeint F, Bruce WR, Shangari N, Mehta R, O’Brien PJ (2006) Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism. Chem Biol Interact 163(1–2):94–112. https://doi.org/10.1016/j.cbi.2006.04.014

    Article  Google Scholar 

  • Elouardi M, Zair T, Mabrouki J, Fattah G, Benchrifa M, Qisse N, El Belghiti MA (2022) A review of botanical, biogeographical phytochemical and toxicological aspects of the toxic plants in Morocco. Toxicologie Analytique et Clinique

  • Elouardi M, Fattah G, Benchrifa M, Mabrouki J, Zair T, Belghiti MAE (2023) The evaluation of the valorization of cannabis residues for the production of energy by combustion. In: Advanced Technology for Smart Environment and Energy, 247–256

  • Fattah G, Ghrissi F, Mabrouki J, Kabriti M (2021) Control of physicochemical parameters of spring waters near quarries exploiting limestone rock. In: E3S Web of Conferences, 234, 00018

  • Fattah G, Elouardi M, Benchrifa M, Ghrissi F, Mabrouki J (2023) Modeling of the coagulation system for treatment of real water rejects. In: Advanced Technology for Smart Environment and Energy, 161–171

  • Fazril I et al (2020) Microwave-assisted in situ transesterification of wet microalgae for the production of biodiesel: progress review. IOP Conf Ser Earth Environ Sci 476(1):012078

    Article  Google Scholar 

  • Fradique M, Batista AP, Nunes MC, Gouveia L, Bandarra NM, Raymundo A (2013) Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA’s source. LWT Food Sci Technol 50(1):312–319. https://doi.org/10.1016/j.lwt.2012.05.006

    Article  Google Scholar 

  • Freifeld BM, Daley TM, Hovorka SD, Henninges J, Underschultz J, Sharma S (2009) Recent advances in well-based monitoring of CO2 sequestration. Energy Procedia 1(1):2277–2284

    Article  Google Scholar 

  • Garbowski T, Pietryka M, Pulikowski K, Richter D (2020) The use of a natural substrate for immobilization of microalgae cultivated in wastewater. Sci Rep 10(1):1–9

    Article  Google Scholar 

  • Gentili FG, Fick J (2017) Algal cultivation in urban wastewater: an efficient way to reduce pharmaceutical pollutants. J Appl Phycol 29(1):255–262. https://doi.org/10.1007/s10811-016-0950-0

    Article  Google Scholar 

  • Goli A, Shamiri A, Talaiekhozani A, Eshtiaghi N, Aghamohammadi N, Aroua MK (2016) An overview of biological processes and their potential for CO2 capture. J Environ Manage 183:41–58

    Article  Google Scholar 

  • Griffith CA, Dzombak DA, Lowry GV (2011) Physical and chemical characteristics of potential seal strata in regions considered for demonstrating geological saline CO2 sequestration. Environ Earth Sci 64(4):925–948. https://doi.org/10.1007/s12665-011-0911-5

    Article  Google Scholar 

  • Grivalský T, Ranglová K, da Câmara Manoel JA, Lakatos GE, Lhotský R, Masojídek J (2019) Development of thin-layer cascades for microalgae cultivation: milestones. Folia microbiologica 64(5): 603–614

  • Gupta A, Paul A (2019) Carbon capture and sequestration potential in India: a comprehensive review. Energy Procedia 160:848–855

    Article  Google Scholar 

  • Han FY, Komiyama M, Uemura Y, Rabat NE (2020) One-path catalytic supercritical methanothermal production of fatty acid methyl ester fractions from wet microalgae Chlorella vulgaris. Biomass Bioenerg 143:105834

    Article  Google Scholar 

  • Hernández-Carmona G et al (2009) Monthly variation in the chemical composition of Eisenia arborea J.E. Areschoug. J Appl Phycol 21(5):607–616. https://doi.org/10.1007/s10811-009-9454-5

    Article  Google Scholar 

  • Herzog H, Golomb D (2004) Carbon capture and storage from fossil fuel use. Encyclop Energy 1(6562):277–287

    Article  Google Scholar 

  • Jerney J, Spilling K (2018) Large scale cultivation of microalgae: open and closed systems. In: Biofuels from Algae, Springer, pp. 1–8.

  • Jhamb S, Enekvist M, Liang X, Zhang X, Dam-Johansen K, Kontogeorgis GM (2020) A review of computer-aided design of paints and coatings. Curr Opin Chem Eng 27:107–120

    Article  Google Scholar 

  • Jung J-H, Sirisuk P, Ra CH, Kim J-M, Jeong G-T, Kim S-K (2019) Effects of green LED light and three stresses on biomass and lipid accumulation with two-phase culture of microalgae. Process Biochem 77:93–99

    Article  Google Scholar 

  • Kassim MA, Meng TK (2017) Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Sci Total Environ 584:1121–1129

    Article  Google Scholar 

  • Kenny P, Flynn KJ (2016) Coupling a simple irradiance description to a mechanistic growth model to predict algal production in industrial-scale solar-powered photobioreactors. J Appl Phycol 28(6):3203–3212

    Article  Google Scholar 

  • Klein BC, Chagas MF, Watanabe MDB, Bonomi A, Maciel Filho R (2019) Low carbon biofuels and the New Brazilian National Biofuel Policy (RenovaBio): a case study for sugarcane mills and integrated sugarcane-microalgae biorefineries. Renew Sustain Energy Rev 115:109365

  • Kusmayadi A, Leong YK, Yen H-W, Huang C-Y, Chang J-S (2021) Microalgae as sustainable food and feed sources for animals and humans–biotechnological and environmental aspects. Chemosphere 271:129800

    Article  Google Scholar 

  • Leaf MC, Gay JS, Newbould MJ, Hewitt OR, Rogers SL (2020) Calcareous algae and cyanobacteria. Geol Today 36(2):75–80

    Article  Google Scholar 

  • Lee JJL, Li A, Lyu X, Kim JJ, Chen WN (2021) Free fatty acids reduction in waste cooking oil by rhodosporidium toruloides and simultaneous carotenoids, lipids, and PAL enzyme production in a two-phase culture system. Eur J Lipid Sci Technol 123(8):2000354

    Article  Google Scholar 

  • Letcher TM (2019) Why do we have global warming?. In: Managing global warming, Elsevier, pp. 3–15.

  • Li Q, Ma M, Wu X, Yang H (2018) Snow cover and vegetation-induced decrease in global albedo from 2002 to 2016. J Geophys Res Atmos 123(1):124–138

    Article  Google Scholar 

  • Lin X et al (2020) Spatiotemporal variability of land surface albedo over the Tibet Plateau from 2001 to 2019. Remote Sens 12(7):1188

    Article  Google Scholar 

  • Loukili H, Mabrouki J, Anouzla A, Kouzi Y, Younssi SA, Digua K, Abroukic Y (2021) Pre-treated Moroccan natural clays: application to the wastewater treatment of textile industry. Desalin Water Treat 240:124–136

    Article  Google Scholar 

  • Loukili H, Anouzla A, Jioui I, Achiou B, Alami Younssi S, Azoulay K, Riadi Y (2022) Combining multiple regression and principal component analysis to evaluate the effects of ambient air pollution on children’s respiratory diseases. Int J Inform Technol 14(3): 1305–1310

  • Mabrouki J, El Yadini A, Bencheikh I, Azoulay K, Moufti A, El Hajjaji S (2019) Hydrogeological and hydrochemical study of underground waters of the tablecloth in the vicinity of the controlled city dump mohammedia (Morocco). In: Advanced Intelligent Systems for Sustainable Development (AI2SD’2018) Vol 3: Advanced Intelligent Systems Applied to Environment, 22–33

  • Mabrouki J, Moufti A, Bencheikh I, Azoulay K, El Hamdouni Y, El Hajjaji S (2020a) Optimization of the coagulant flocculation process for treatment of leachate of the controlled discharge of the city Mohammedia (Morocco). In: Advanced Intelligent Systems for Sustainable Development (AI2SD’2019) Volume 7-Advanced Intelligent Systems for Sustainable Development Applied in Energy and Electrical Engineering Springer International Publishing, 200–212

  • Mabrouki J, Bencheikh I, Azoulay K, Es-Soufy M, El Hajjaji S (2020b) Smart monitoring system for the long-term control of aerobic leachate treatment: dumping case Mohammedia (Morocco). Big Data Netw Technol 3:220–230

    Article  Google Scholar 

  • Mabrouki J, Azrour M, Farhaoui Y, El Hajjaji S (2020c) Intelligent system for monitoring and detecting water quality. In: Farhaoui Y (ed) Big Data and networks technologies, vol. 81. Springer International Publishing, Cham, pp. 172–182. https://doi.org/10.1007/978-3-030-23672-4_13.

  • Mabrouki J, Azrour M, Fattah G, Dhiba D, El Hajjaji S (2021) Intelligent monitoring system for biogas detection based on the internet of things: Mohammedia, morocco city landfill case. Big Data Min Anal 4(1):10–17

    Article  Google Scholar 

  • Mabrouki J, Benbouzid M, Dhiba D, El Hajjaji S (2022a) Simulation of wastewater treatment processes with Bioreactor Membrane Reactor (MBR) treatment versus conventional the adsorbent layer-based filtration system (LAFS). Int J Environ Anal Chem 102(19):7458–7468

    Article  Google Scholar 

  • Mabrouki J, Azoulay K, Elfanssi S, Bouhachlaf L, Mousli F, Azrour M, El Hajjaji S (2022b) Smart system for monitoring and controlling of agricultural production by the IoT. In: IoT and Smart Devices for Sustainable Environment, 103–115

  • Mabrouki J, Azroure M, Boubekraoui A, El Hajjaji S (2022c) Simulation and optimization of solar domestic hot water systems. Int J Soc Ecol Sustain Dev (IJSESD) 13(1):1–11

    Article  Google Scholar 

  • Mabrouki J, Benchrifa M, Ennouhi M, Azoulay K, Bencheikh I, Rachiq T, El Hajjaji S (2023) Geographic information system for the study of water resources in Chaâba El Hamra, Mohammedia (Morocco). In: Artificial Intelligence and Smart Environment: ICAISE’2022, 469–474

  • Mantzorou A, Navakoudis E, Paschalidis K, Ververidis F (2018) Microalgae: a potential tool for remediating aquatic environments from toxic metals. Int J Environ Sci Technol 15(8):1815–1830

    Article  Google Scholar 

  • Mathew GM et al (2021) Recent advances in biodiesel production: challenges and solutions. Sci Total Environ 794:148751

    Article  Google Scholar 

  • McKenzie NR, Horton BK, Loomis SE, Stockli DF, Planavsky NJ, Lee C-TA (2016) Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science 352(6284):444–447

    Article  Google Scholar 

  • Mgalaa S, Mabrouki J, Elouardi M, El Azzouzi L, Moufti A, El Hajjaji S, El Belghiti MA (2022) Study and evaluation of the degradation of procion blue dye by the ozonation method: parametric and isothermal study. Nanotechnol Environ Eng 7(3): 691–697

  • Mikhaylov A, Moiseev N, Aleshin K, Burkhardt T (2020) Global climate change and greenhouse effect. Entrepren Sustain Issues 7:2897–2913. https://doi.org/10.9770/jesi.2020.7.4(21)

    Article  Google Scholar 

  • Miyawaki B et al (2021) Microalgae derived biomass and bioenergy production enhancement through biogas purification and wastewater treatment. Renew Energy 163:1153–1165

    Article  Google Scholar 

  • Mohajan H (2011) Greenhouse gas emissions increase. Int J Econ Polit Integr 1(2): 21–34

  • Morris T (2003) Harmful algal blooms in north carolina: blue greens and human health. In: Division of Public Health, North Carolina Department of Health and Human Services, p. 7

  • Mousli F, Mabrouki J, Bouhachlaf L, Azrour M, Hajjaji SE (2022) Detection of some water elements based on IoT: review study. In: IoT and Smart Devices for Sustainable Environment, pp. 1–17

  • Nazih H, J-M Bard (2018) Microalgae in human health: interest as a functional food. In: Microalgae in health and disease prevention, pp. 211–226

  • Nweze NO, Domrufus NA (2006) Limnological studies on nike lake, enugu, enugu state—the metaphyton and some physic-chemical aspects. Niger J Bot 19(2):396–404

    Google Scholar 

  • Oberholster PJ, Botha AM, Grobbelaar JU (2004) Microcystis aeruginosa: source of toxic microcystins in drinking water. Afr J Biotechnol 3(3)

  • Ong HC et al (2021) Recent advances in biodiesel production from agricultural products and microalgae using ionic liquids: opportunities and challenges. Energy Convers Manage 228:113647

    Article  Google Scholar 

  • Osama A, Hosney H, Moussa MS (2021) Potential of household photobioreactor for algae cultivation. J Water Clim Change 12(6):2147–2180. https://doi.org/10.2166/wcc.2021.261

    Article  Google Scholar 

  • Ou L et al (2021) Utilizing high-purity carbon dioxide sources for algae cultivation and biofuel production in the United States: opportunities and challenges. J Clean Prod 321:128779

    Article  Google Scholar 

  • Pang G, Chen D, Wang X, Lai H-W (2022) Spatiotemporal variations of land surface albedo and associated influencing factors on the Tibetan Plateau. Sci Total Environ 804:150100

    Article  Google Scholar 

  • Patterson DJ, van den Hoek C, Mann DG, Jahns HM (1997) Algae: an introduction to phycology. Cambridge University Press, Cambridge UK (1998), $ A 175,-ISBN 9 780521 304199. Urban & Fischer

  • Piiparinen J, Barth D, Eriksen NT, Teir S, Spilling K, Wiebe MG (2018) Microalgal CO2 capture at extreme pH values. Algal Res 32:321–328

    Article  Google Scholar 

  • Qisse N, Fattah G, Elouardi M, Mabrouki J, El Azzouzi L, Ennouari A, El Azzouzi M (2022) Competitive adsorption of Zn in wastewater effluents by NaOH-activated raw coffee grounds derivative and coffee grounds. Desalin Water Treat 258:123–132

    Article  Google Scholar 

  • Quinn LD, Matlaga DP, Barney JN (2015) Bioenergy and Biological Invasions: Ecological, Agronomic and Policy Perspectives on Minimizing Risk, vol. 5. CABI

  • Rachiq T, Abrouki Y, Mabrouki J, Samghouli N, Fersi C, Rahal S, El Hajjaji S (2021) Evaluation of the efficiency of different materials to remove specific pollutants from landfill leachate. Desalin Water Treat 238:240–250

    Article  Google Scholar 

  • Rahmani M, Mabrouki J, Regraguy B, Moufti A, El’Mrabet M, Dahchour A, El Hajjaji S (2021) Adsorption of (methylene blue) onto natural oil shale: kinetics of adsorption, isotherm and thermodynamic studies. Int J Environ Anal Chem:1–15

  • Ramanna L, Rawat I, Bux F (2017) Light enhancement strategies improve microalgal biomass productivity. Renew Sustain Energy Rev 80:765–773

    Article  Google Scholar 

  • Raven JA, Gobler CJ, Hansen PJ (2020) Dynamic CO2 and pH levels in coastal, estuarine, and inland waters: theoretical and observed effects on harmful algal blooms. Harmful Algae 91:101594

    Article  Google Scholar 

  • Regraguy B, Rahmani M, Mabrouki J, Drhimer F, Ellouzi I, Mahmou C, Hajjaji SE (2022) Photocatalytic degradation of methyl orange in the presence of nanoparticles NiSO4/TiO2. Nanotechnol Environ Eng 7(1): 157–171

  • Rezk H, Nassef AM, Abdelkareem MA, Alami AH, Fathy A (2021) Comparison among various energy management strategies for reducing hydrogen consumption in a hybrid fuel cell/supercapacitor/battery system. Int J Hydrogen Energy 46(8):6110–6126

    Article  Google Scholar 

  • Richardson JW, Johnson MD, Zhang X, Zemke P, Chen W, Hu Q (2014) A financial assessment of two alternative cultivation systems and their contributions to algae biofuel economic viability. Algal Res 4:96–104

    Article  Google Scholar 

  • Ruiz J, Wijffels RH, Dominguez M, Barbosa MJ (2022) Heterotrophic vs autotrophic production of microalgae: bringing some light into the everlasting cost controversy. Algal Res 64:102698

    Article  Google Scholar 

  • Sathasivam R, Radhakrishnan R, Hashem A, Abd_Allah EF (2019) Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci 26(4): 709–722

  • Schembre-McCabe JM, Kamath J, Gurton RM (2007) Mechanistic Studies of CO2 Sequestration. In: Presented at the International Petroleum Technology Conference. https://doi.org/10.2523/IPTC-11391-MS.

  • Sirisuk P, Ra C-H, Jeong G-T, Kim S-K (2018) Effects of wavelength mixing ratio and photoperiod on microalgal biomass and lipid production in a two-phase culture system using LED illumination. Biores Technol 253:175–181

    Article  Google Scholar 

  • Sirohi R, et al. (2022) Design and applications of photobioreactors—a review. Bioresour Technol:126858

  • Theo WL, Lim JS, Hashim H, Mustaffa AA, Ho WS (2016) Review of pre-combustion capture and ionic liquid in carbon capture and storage. Appl Energy 183:1633–1663. https://doi.org/10.1016/j.apenergy.2016.09.103

    Article  Google Scholar 

  • Valdovinos-García EM, Barajas-Fernández J, Olán-Acosta MÁ, Petriz-Prieto MA, Guzmán-López A, Bravo-Sánchez MG (2020) Techno-economic study of CO2 capture of a thermoelectric plant using microalgae (Chlorella vulgaris) for production of feedstock for bioenergy. Energies 13(2): 413

  • Venceslau EB, Pessoa Filho PA, Le Roux GA (2012) Application of computer aided mixture design in paints and coatings. In: Computer Aided Chemical Engineering, vol. 30, Elsevier, pp. 587–591

  • Vuppaladadiyam AK et al (2018) Impact of flue gas compounds on microalgae and mechanisms for carbon assimilation and utilization. Chemsuschem 11(2):334–355

    Article  Google Scholar 

  • Woo H et al (2019) Treatment of reverse osmosis concentrate using an algal-based MBR combined with ozone pretreatment. Water Res 159:164–175

    Article  Google Scholar 

  • Xiaogang H, Jalalah M, Jingyuan W, Zheng Y, Li X, Salama E-S (2020) Microalgal growth coupled with wastewater treatment in open and closed systems for advanced biofuel generation. Biomass Convers Biorefin: 1–20

  • Xing J et al (2019) Organic matter removal and membrane fouling mitigation during algae-rich surface water treatment by powdered activated carbon adsorption pretreatment: Enhanced by UV and UV/chlorine oxidation. Water Res 159:283–293

    Article  Google Scholar 

  • Yadav G et al (2021) Mechanism and challenges behind algae as a wastewater treatment choice for bioenergy production and beyond. Fuel 285:119093

    Article  Google Scholar 

  • Yoro KO, Daramola MO (2020) CO2 emission sources, greenhouse gases, and the global warming effect. In: Advances in carbon capture, Elsevier, pp. 3–28.

  • Zakkour P, Haines M (2007) Permitting issues for CO2 capture, transport and geological storage: a review of Europe, USA, Canada and Australia. Int J Greenhouse Gas Control 1(1):94–100

    Article  Google Scholar 

  • Zhang H, Yin W, Ma D, Liu X, Xu K, Liu J (2021a) Phytohormone supplementation significantly increases fatty acid content of Phaeodactylum tricornutum in two-phase culture. J Appl Phycol 33(1):13–23

    Article  Google Scholar 

  • Zhang L, et al. (2021b) Biochemical wastewater from landfill leachate pretreated by microalgae achieving algae’s self-reliant cultivation in full wastewater-recycling chain with desirable lipid productivity. Bioresour Technol 340: 125640. https://doi.org/10.1016/j.biortech.2021.125640.

  • Zuccaro G, Yousuf A, Pollio A, Steyer J-P (2020) “Chapter 2—microalgae cultivation systems. In: Yousuf A (ed) Microalgae Cultivation for Biofuels Production. Academic Press, pp. 11–29. https://doi.org/10.1016/B978-0-12-817536-1.00002-3

Download references

Acknowledgements

This research was released by a group of researchers of the faculty of Sciences Rabat, Mohammed V University, Morocco. The corresponding author would like to thank the journal editors for the importance given to our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal Mabrouki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Philippe Michaud.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elouardi, M., Mabrouki, J. & El Belghiti, M.A. Evaluation of algal absorbed CO2 sequestration techniques: a review. Euro-Mediterr J Environ Integr 8, 481–491 (2023). https://doi.org/10.1007/s41207-023-00379-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41207-023-00379-x

Keywords

Navigation