Skip to main content
Log in

Fabrication of biochar-based bimetallic green nanocomposite as a photocatalytic adsorbent for tetracycline and antibacterial agent

  • Original Paper
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

The contamination of water sources by emerging contaminants, such as tetracycline antibiotics, poses a growing environmental concern due to the lack of sustainable removal methods. An eco-friendly solution involves using aquatic weed-derived biochar to synthesize metallic nanocomposites, particularly Ag-Zn, for effective antibiotic removal from water. In this study, we developed Eichhornia crassipes (water hyacinth) biomass-derived biochar-based bimetallic nanocomposites (EBCbmNC) and evaluated their adsorption and photodegradation efficiency for tetracycline (TC) in water. Comprehensive characterization techniques were used to confirm the successful synthesis of nanocomposites with particle sizes of 20, 50, and 100 nm and to assess their properties. Optimal TC removal was achieved with 0.01 g of EBCbmNC at pH 4.0 and 70 °C. The pseudo-second-order model accurately described the adsorption process (R2 = 0.99), with observed and computed adsorption capacities in close agreement (77.43 and 76.92 mg/g, respectively). The Freundlich model indicated multilayer adsorption on a heterogeneous surface (R2 = 0.99). Thermodynamic analysis showed endothermic and favorable adsorption. EBCbmNC also exhibited significant photocatalytic activity, achieving 90% degradation of TC in 40 min under ideal conditions. Additionally, it displayed strong antibacterial efficiency against E. coli and maintained acceptable removal efficiencies over multiple reuse cycles. These findings underscore the potential of EBCbmNC as a sustainable and cost-effective material for tetracycline removal, offering an alternative to conventional water treatment methods. Eichhornia biochar-based nanocomposite shows promise for eco-friendly tetracycline removal, providing an environmentally sustainable solution to water contamination challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Geissen V, Mol H, Klumpp E et al (2015) Emerging pollutants in the environment: a challenge for water resource management. Int Soil Water Conserv Res 3:57–65. https://doi.org/10.1016/j.iswcr.2015.03.002

    Article  Google Scholar 

  2. Ng NT, Ibrahim WAW, Sutirman ZA, S MM, AK AS (2023) Magnetic nanomaterials for preconcentration and removal of emerging contaminants in the water environment. Nanotechnol Environ Eng 8:297–315. https://doi.org/10.1007/s41204-022-00296-4

    Article  CAS  Google Scholar 

  3. Fiaz A, Zhu D, Sun J (2021) Environmental fate of tetracycline antibiotics: degradation pathway mechanisms, challenges, and perspectives. Environ Sci Eur. https://doi.org/10.1186/s12302-021-00505-y

    Article  Google Scholar 

  4. Kraemer SA, Ramachandran A, Perron GG (2019) Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms 7:1–24. https://doi.org/10.3390/microorganisms7060180

    Article  CAS  Google Scholar 

  5. Hoslett J, Ghazal H, Katsou E, Jouhara H (2021) The removal of tetracycline from water using biochar produced from agricultural discarded material. Sci Total Environ 751:141755. https://doi.org/10.1016/j.scitotenv.2020.141755

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Hoang LP, Nguyen TMP, Van HT et al (2022) Removal of tetracycline from aqueous solution using composite adsorbent of ZnAl layered double hydroxide and bagasse biochar. Environ Technol Innov 28:102914. https://doi.org/10.1016/j.eti.2022.102914

    Article  CAS  Google Scholar 

  7. Hosny M, Fawzy M, Eltaweil AS (2022) Green synthesis of bimetallic Ag/ZnO@Biohar nanocomposite for photocatalytic degradation of tetracycline, antibacterial and antioxidant activities. Sci Rep 12:1–17. https://doi.org/10.1038/s41598-022-11014-0

    Article  CAS  Google Scholar 

  8. Oluwole AO, Olatunji OS (2022) Photocatalytic degradation of tetracycline in aqueous systems under visible light irridiation using needle-like SnO2 nanoparticles anchored on exfoliated g-C3N4. Environ Sci Eur. https://doi.org/10.1186/s12302-021-00588-7

    Article  Google Scholar 

  9. Priya SS, Radha KV (2015) A review on the adsorption studies of tetracycline onto various types of adsorbents. Chem Eng Commun. https://doi.org/10.1080/00986445.2015.1065820

    Article  Google Scholar 

  10. Nasiri A, Rajabi S, Amiri A et al (2022) Adsorption of tetracycline using CuCoFe2O4@Chitosan as a new and green magnetic nanohybrid adsorbent from aqueous solutions: isotherm, kinetic and thermodynamic study. Arab J Chem 15:104014. https://doi.org/10.1016/j.arabjc.2022.104014

    Article  CAS  Google Scholar 

  11. Wu G, Sun L, Xu J et al (2022) Efficient degradation of tetracycline antibiotics by engineered myoglobin with high peroxidase activity. Molecules 27:8660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tan H, Kong D, Ma Q et al (2022) Biodegradation of tetracycline antibiotics by the yeast strain cutaneotrichosporon dermatis M503. Microorganisms 10:565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yılmaz M, Tas E, Hasar H (2022) Comparative potentials of H2 and O2 -MBfRs in removing multiple tetracycline antibiotics. Process Saf Environ Prot 167:184–191. https://doi.org/10.1016/j.psep.2022.09.020

    Article  CAS  Google Scholar 

  14. Ding C, Zhu Q, Yang B, Petropoulos E (2023) Efficient photocatalysis of tetracycline hydrochloride ( TC-HCl ) from pharmaceutical wastewater using AgCl / ZnO / g-C3N4 composite under visible light: process and mechanisms. J Environ Sci 126:249–262. https://doi.org/10.1016/j.jes.2022.02.032

    Article  CAS  Google Scholar 

  15. Lee D, Kim S, Tang K et al (2021) Oxidative degradation of tetracycline by magnetite and persulfate : performance water matrix effect, and reaction mechanism. Nanomaterials 11(9):2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krasucka P, Pan B, Sik Ok Y et al (2021) Engineered biochar – a sustainable solution for the removal of antibiotics from water. Chem Eng J 405:126926. https://doi.org/10.1016/j.cej.2020.126926

    Article  CAS  Google Scholar 

  17. James E, Amonette SJ (2012) Characteristics of biochar microchemical properties. Biochar for environmental management. Routledge, pp 65–84

    Google Scholar 

  18. Ambika S, Kumar M, Pisharody L et al (2022) Modified biochar as a green adsorbent for removal of hexavalent chromium from various environmental matrices: mechanisms, methods, and prospects. Chem Eng J 439:135716. https://doi.org/10.1016/j.cej.2022.135716

    Article  CAS  Google Scholar 

  19. Mohan D, Rajput S, Singh VK et al (2011) Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. J Hazard Mater 188:319–333. https://doi.org/10.1016/j.jhazmat.2011.01.127

    Article  CAS  PubMed  Google Scholar 

  20. Chausali N, Saxena J, Prasad R (2021) Nanobiochar and biochar based nanocomposites: advances and applications. J Agric Food Res 5:100191. https://doi.org/10.1016/j.jafr.2021.100191

    Article  CAS  Google Scholar 

  21. Kundu A, Mondal A (2019) Kinetics, isotherm, and thermodynamic studies of methylene blue selective adsorption and photocatalysis of malachite green from aqueous solution using layered Na-intercalated Cu-doped Titania. Appl Clay Sci 183:105323. https://doi.org/10.1016/j.clay.2019.105323

    Article  CAS  Google Scholar 

  22. Viswanathan SP, Njazhakunnathu GV, Neelamury SP et al (2022) The efficiency of aquatic weed–derived biochar in enhanced removal of cationic dyes from aqueous medium. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-03546-2

    Article  Google Scholar 

  23. Rezania S, Ponraj M, Talaiekhozani A (2015) Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wast. J Environ Manag 163:125–133. https://doi.org/10.1016/j.jenvman.2015.08.018

    Article  CAS  Google Scholar 

  24. Velázquez-Hernández AM, García-Rivas JL, Martínez-Gallegos S et al (2022) Phytosynthesis of TiO2 nanoparticles using E. crassipes leaf extracts their photocatalytic evaluation and microbicide effect. Int J Photoenergy. https://doi.org/10.1155/2022/5177859

    Article  Google Scholar 

  25. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  PubMed  Google Scholar 

  26. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  27. Velázquez-Hernández M, Schabes-Retchkiman P, Illescas J, Macedo MG, González-Juárez SM-G JC (2019) Ag, Zn and Cu nanoparticles synthesized from Eichhornia crassipes leaf extracts and their application in phenol photocatalytic degradation. MRS Adv 357:1–8. https://doi.org/10.1557/adv.2019.411

    Article  CAS  Google Scholar 

  28. Hublikar LV, Ganachari SV, Raghavendra N et al (2021) Green synthesis silver nanoparticles via Eichhornia Crassipes leaves extract and their applications. Curr Res Green Sustain Chem 4:100212. https://doi.org/10.1016/j.crgsc.2021.100212

    Article  CAS  Google Scholar 

  29. Rajiv P, Vanathi P, Thangamani A (2018) An investigation of phytotoxicity using Eichhornia mediated zinc oxide nanoparticles on Helianthus annuus. Biocatal Agric Biotechnol 16:419–424. https://doi.org/10.1016/j.bcab.2018.09.017

    Article  Google Scholar 

  30. Eltaweil AS, Abdelfatah AM, Hosny M, Fawzy M (2022) Novel biogenic synthesis of a Ag@biochar nanocomposite as an antimicrobial agent and photocatalyst for methylene blue degradation. ACS Omega 7:8046–8059. https://doi.org/10.1021/acsomega.1c07209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Viswanathan SP, Njazhakunnathu GV, Neelamury SP et al (2023) Invasive wetland weeds derived biochar properties affecting soil carbon dynamics of south indian tropical ultisol. Environ Manag. https://doi.org/10.1007/s00267-023-01791-3

    Article  Google Scholar 

  32. Yang X, Zhang S, Ju M, Liu L (2019) Preparation and modification of biochar materials and their application in soil remediation. Appl Sci. https://doi.org/10.3390/app9071365

    Article  Google Scholar 

  33. Ahuja R, Kalia A, Sikka R, Chaitra P (2022) Nano modifications of biochar to enhance heavy metal adsorption from wastewaters: a review. ACS Omega 7:45825–45836. https://doi.org/10.1021/acsomega.2c05117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ghassemi-Golezani K, Rahimzadeh S (2022) The biochar-based nanocomposites influence the quantity, quality and antioxidant activity of essential oil in dill seeds under salt stress. Sci Rep. https://doi.org/10.1038/s41598-022-26578-0

    Article  PubMed  PubMed Central  Google Scholar 

  35. Karthik L, Kumar G, Kirthi AV et al (2014) Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng 37:261–267. https://doi.org/10.1007/s00449-013-0994-3

    Article  CAS  PubMed  Google Scholar 

  36. Abdelfatah AM, Fawzy M, El-Khouly ME, Eltaweil AS (2021) Efficient adsorptive removal of tetracycline from aqueous solution using phytosynthesized nano-zero valent iron. J Saudi Chem Soc. https://doi.org/10.1016/j.jscs.2021.101365

    Article  Google Scholar 

  37. Fan S, Wang Y, Li Y et al (2018) Removal of tetracycline from aqueous solution by biochar derived from rice straw. Environ Sci Pollut Res 25:29529–29540. https://doi.org/10.1007/s11356-018-2976-0

    Article  CAS  Google Scholar 

  38. Fan Z, Fang J, Zhang G et al (2022) Improved adsorption of tetracycline in water by a modified caulis spatholobi residue biochar. ACS Omega 7:30543–30553. https://doi.org/10.1021/acsomega.2c04033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Al-Qasmi N, Al-Gethami W, Alhashmialameer D et al (2022) Evaluation of green-synthesized cuprospinel nanoparticles as a nanosensor for detection of low-concentration Cd(II) ion in the aqueous solutions by the quartz crystal microbalance method. Materials (Basel). https://doi.org/10.3390/ma15186240

    Article  PubMed  Google Scholar 

  40. Naghipour D, Hoseinzadeh L, Taghavi K et al (2021) Effective removal of tetracycline from aqueous solution using biochar prepared from pine bark: isotherms, kinetics and thermodynamic analyses. Int J Environ Anal Chem 00:1–14. https://doi.org/10.1080/03067319.2021.1942462

    Article  CAS  Google Scholar 

  41. Wu FC, Tseng RL, Huang SC, Juang RS (2009) Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: a mini-review. Chem Eng J 151:1–9. https://doi.org/10.1016/j.cej.2009.02.024

    Article  CAS  Google Scholar 

  42. Revellame ED, Fortela DL, Sharp W et al (2020) Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: a review. Clean Eng Technol 1:100032. https://doi.org/10.1016/j.clet.2020.100032

    Article  Google Scholar 

  43. da Silva BF, Schnorr CE, da Rosa ST et al (2022) Highly efficient adsorption of tetracycline using chitosan-based magnetic adsorbent. Polymers (Basel). https://doi.org/10.3390/polym14224854

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sahmoune MN (2019) Evaluation of thermodynamic parameters for adsorption of heavy metals by green adsorbents. Environ Chem Lett 17:697–704. https://doi.org/10.1007/s10311-018-00819-z

    Article  CAS  Google Scholar 

  45. Wathukarage A, Herath I, Iqbal MCM, Vithanage M (2019) Mechanistic understanding of crystal violet dye sorption by woody biochar: implications for wastewater treatment. Environ Geochem Health 41:1647–1661. https://doi.org/10.1007/s10653-017-0013-8

    Article  CAS  PubMed  Google Scholar 

  46. Venkatesh R, Sekaran PR, Udayakumar K et al (2022) Adsorption and photocatalytic degradation properties of bimetallic Ag/MgO/Biochar nanocomposites. Adsorpt Sci Technol. https://doi.org/10.1155/2022/3631584

    Article  Google Scholar 

  47. Lu Y, Cai Y, Zhang S et al (2022) Application of biochar-based photocatalysts for adsorption( photo ) degradation / reduction of environmental contaminants: mechanism, challenges and perspective. Biochar. https://doi.org/10.1007/s42773-022-00173-y

    Article  Google Scholar 

  48. Ajala OA, Akinnawo SO, Bamisaye A et al (2023) Adsorptive removal of antibiotic pollutants from wastewater using biomass/biochar-based adsorbents. RSC Adv 13:4678–4712. https://doi.org/10.1039/d2ra06436g

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Ambaye TG, Vaccari M, van Hullebusch ED et al (2021) Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int J Environ Sci Technol 18:3273–3294. https://doi.org/10.1007/s13762-020-03060-w

    Article  CAS  Google Scholar 

  50. Yang B, Dai J, Zhao Y et al (2023) Synergy effect between tetracycline and Cr(VI) on combined pollution systems driving biochar-templated Fe3O4@SiO2/TiO2/g-C3N4 composites for enhanced removal of pollutants. Biochar 5:1–20. https://doi.org/10.1007/s42773-022-00197-4

    Article  CAS  ADS  Google Scholar 

  51. Sun H, Yang J, Wang Y et al (2021) Study on the removal efficiency and mechanism of tetracycline in water using biochar and magnetic biochar. Coatings 11:1354

    Article  CAS  Google Scholar 

  52. Buzzetti L, Crisenza GEM, Melchiorre P (2019) Mechanistic studies in photocatalysis. Angew Chem Int Ed 58:3730–3747. https://doi.org/10.1002/anie.201809984

    Article  CAS  Google Scholar 

  53. Fito J, Kefeni KK, Nkambule TTI (2022) The potential of biochar-photocatalytic nanocomposites for removal of organic micropollutants from wastewater. Sci Total Environ 829:154648

    Article  CAS  PubMed  ADS  Google Scholar 

  54. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227–1249. https://doi.org/10.2147/IJN.S121956

    Article  CAS  Google Scholar 

  55. Sánchez-López E, Gomes D, Esteruelas G et al (2020) Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials 10:1–43. https://doi.org/10.3390/nano10020292

    Article  CAS  Google Scholar 

  56. Basavegowda N, Baek KH (2021) Multimetallic nanoparticles as alternative antimicrobial agents: challenges and perspectives. Molecules. https://doi.org/10.3390/molecules26040912

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hochvaldová L, Večeřová R, Kolář M et al (2022) Antibacterial nanomaterials: upcoming hope to overcome antibiotic resistance crisis. Nanotechnol Rev 11:1115–1142. https://doi.org/10.1515/ntrev-2022-0059

    Article  CAS  Google Scholar 

  58. Mousavi-Kouhi SM, Beyk-Khormizi A, Amiri MS et al (2021) Silver-zinc oxide nanocomposite: from synthesis to antimicrobial and anticancer properties. Ceram Int 47:21490–21497. https://doi.org/10.1016/j.ceramint.2021.04.160

    Article  CAS  Google Scholar 

  59. Długosz O, Banach M (2021) Continuous synthesis of photocatalytic nanoparticles of pure ZnO and ZnO modified with metal nanoparticles. J Nanostructure Chem 11:601–617. https://doi.org/10.1007/s40097-021-00387-9

    Article  CAS  Google Scholar 

  60. Kaur M, Kumar M, Sachdeva S, Puri SK (2018) Aquatic weeds as the next generation feedstock for sustainable bioenergy production. Bioresour Technol 251:390–402. https://doi.org/10.1016/j.biortech.2017.11.082

    Article  CAS  PubMed  Google Scholar 

  61. Baskar AV, Bolan N, Hoang SA et al (2022) Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: a review. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2022.153555

    Article  PubMed  Google Scholar 

  62. Singh Yadav SP, Bhandari S, Bhatta D et al (2023) Biochar application: a sustainable approach to improve soil health. J Agric Food Res 11:100498. https://doi.org/10.1016/j.jafr.2023.100498

    Article  CAS  Google Scholar 

  63. Masto RE, Kumar S, Rout TK et al (2013) Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity. CATENA 111:64–71. https://doi.org/10.1016/j.catena.2013.06.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We duly acknowledge the analytical services of Ms. Manju Mohandas and Ms. Anu Mathew of the Sophisticated Analytical Instrument Facilities (SAIFs), Mahatma Gandhi University, Kottayam, Kerala, India, in providing field-emission scanning electron microscope (FE-SEM) and AFM facility.

Funding

This research received no specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Conceptualization, investigation, writing, and editing were done by SPV. GMK and GVN assisted in laboratory experiments and analysis. SNP assisted in manuscript editing. SBT extended research consultation and rectifications. APT extended all the required facilities and supervised the research. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shanthi Prabha Viswanathan.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Human or animals participants

Not applicable.

Informed consent

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 879 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viswanathan, S.P., Kuriakose, G.M., Njazhakunnathu, G.V. et al. Fabrication of biochar-based bimetallic green nanocomposite as a photocatalytic adsorbent for tetracycline and antibacterial agent. Nanotechnol. Environ. Eng. 9, 29–46 (2024). https://doi.org/10.1007/s41204-023-00349-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41204-023-00349-2

Keywords

Navigation