Skip to main content

Advertisement

Log in

Recent trends in green synthesis of silver, gold, and zinc oxide nanoparticles and their application in nanosciences and toxicity: a review

  • Mini-Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

In the recent past, nanoparticles (NPs) have gained the attention of researchers in diverse fields, including chemistry, physics, agriculture, environmental engineering, biological sciences, and material sciences. It has applications in the catalytic process, food chemistry, electronic devices, agroindustry, industrial products, environmental engineering, cancer therapeutics, wastewater treatment, and surface coating. The data for plant-based synthesis and applications of silver (AgO), gold (AuO), and zinc oxide (ZnO) NPs are scattered and need to be gathered. Therefore, this review is designed to assemble the recent advancement in the plant-based synthesis of AgO, AuO, and ZnO-NPs, and the toxicity results of these NPs have been discussed in detail. So herein, we streamlined the data of plant-based synthesis, application, and toxic effects of AgO, AuO, and ZnO-NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Bezerra JB, Matos RS, Zucolotto B, Pedra PP, Ferreira NS (2019) Effects of different complexing agents on the physical properties of ZnO nanoparticles. Mater Sci Technol 35(2):231–239. https://doi.org/10.1080/02670836.2018.1558598

    Article  Google Scholar 

  2. Stephen S, Thomas TA (2020) Review on green synthesis of silver nanoparticles by employing plants of acanthaceae and its bioactivities. J Nanomed Res 5(3):215–224

    Google Scholar 

  3. Maeda T, Matsubara N, Kobayashi Y, Yasuda Y, Morita T (2017) Synthesis of nanoparticles composed of silver and copper for metal–metal bonding. Mater Sci Technol 33(14):1618–1625. https://doi.org/10.1080/02670836.2017.1303123

    Article  Google Scholar 

  4. Li Y, Zheng L, Xiao L, Wang L, Cui J, Sha D, Liu C (2020) Eco-friendly development of an ultrasmall IONP-loaded nanoplatform for bimodal imaging-guided cancer theranostics. Biomater Sci 8(22):6375–6386. https://doi.org/10.1039/D0BM00867B

    Article  Google Scholar 

  5. Ahmadi S, Fazilati M, Nazem H, Mousavi SM (2021) Green synthesis of magnetic nanoparticles using Satureja hortensis essential oil toward superior antibacterial/fungal and anticancer performance. BioMed Res Inter. https://doi.org/10.1155/2021/8822645

    Article  Google Scholar 

  6. Biffi S, Voltan R, Bortot B, Zauli G, Secchiero P (2019) Actively targeted nanocarriers for drug delivery to cancer cells. Expert Opin Drug Deliv 16(5):481–496. https://doi.org/10.1080/17425247.2019.1604679

    Article  Google Scholar 

  7. Lamichhane N, Sharma S, Parul P, Verma AK, Roy I, Sen T (2021) Iron oxide-based magneto-optical nanocomposites for in vivo biomedical applications. Biomedicines 9(3):288. https://doi.org/10.3390/biomedicines9030288

    Article  Google Scholar 

  8. Pinto RJ, Lucas JM, Morais MP, Santos SA, Silvestre AJ, Marques PA, Freire CS (2017) Demystifying the morphology and size control on the biosynthesis of gold nanoparticles using Eucalyptus globulus bark extract. Ind Crops Prod 105:83–92. https://doi.org/10.1016/j.indcrop.2017.05.003

    Article  Google Scholar 

  9. Akintelu SA, Olugbeko SC, Folorunso AS (2020) A review on synthesis, optimization, characterization and antibacterial application of gold nanoparticles synthesized from plants. Int Nano Lett. https://doi.org/10.1007/s40089-020-00317-7

    Article  Google Scholar 

  10. Wahid F, Khan T, Shehzad A, Ul-Islam M, Kim YY (2014) Interaction of nanomaterials with cells and their medical applications. J Nanosci Nanotechnol 14(1):744–754. https://doi.org/10.1166/jnn.2014.9016

    Article  Google Scholar 

  11. Kamuri MF, Abidin ZZ, Jun LH, Yaacob MH, Hamidon MNB, Yunus NAM, Kamaruddin S (2019) Performance evaluation of free-space fibre optic detection in a lab-on-chip for microorganism. J Sens. https://doi.org/10.1155/2019/1026905

    Article  Google Scholar 

  12. Singh AV, Laux P, Luch A, Balkrishnan S, Dakua SP (2019) Bottom-UP assembly of nanorobots: extending synthetic biology to complex material design. Front Nanosci Nanotechnol 5:1–2. https://doi.org/10.15761/FNN.1000S2005

    Article  Google Scholar 

  13. Antonietta Zoroddu M, Medici S, Ledda A, Marina Nurchi V, LachowiczPeana IJM (2014) Toxicity of nanoparticles. Curr Med Chem 21(33):3837–3853

    Article  Google Scholar 

  14. Lee YJ, Ahn EY, Park Y (2019) Shape-dependent cytotoxicity and cellular uptake of gold nanoparticles synthesized using green tea extract. Nanoscale Res Lett 14(1):1–14. https://doi.org/10.1186/s11671-019-2967-1

    Article  Google Scholar 

  15. Favi PM, Gao M, Johana Sepúlveda Arango L, Ospina SP, Morales M, Pavon JJ, Webster TJ (2015) Shape and surface effects on the cytotoxicity of nanoparticles: gold nanospheres versus gold nanostars. J Biomed Mater Res A 103(11):3449–3462. https://doi.org/10.1002/jbm.a.35491

    Article  Google Scholar 

  16. Sharma K, Guleria S, Razdan VK (2020) Green synthesis of silver nanoparticles using ocimum gratissimum leaf extract: characterization, antimicrobial activity and toxicity analysis. J Plant Biochem Biotechnol 29(2):213–224. https://doi.org/10.1007/s13562-019-00522-2

    Article  Google Scholar 

  17. Yasotha P, Kalaiselvi V, Vidhya N, Ramya V (2020) Green Synthesis and Characterization of Zinc Oxide Nanoparticles using Ocimum tenuiflorum. Inter J Adv Sci Eng. 2020:1584–1588. https://doi.org/10.29294/IJASE.7.1.2020.1584-1588

    Article  Google Scholar 

  18. Kalaiselvi D, Mohankumar A, Shanmugam G, Nivitha S, Sundararaj P (2019) Green synthesis of silver nanoparticles using latex extract of Euphorbia tirucalli: a novel approach for the management of root knot nematode. Meloidogyne incognita J Crop Prot 117:108–114. https://doi.org/10.1016/j.cropro.2018.11.020

    Article  Google Scholar 

  19. Saravanakumar K, Hu X, Chelliah R, Oh DH, Kathiresan K, Wang MH (2020) Biogenic silver nanoparticles-polyvinylpyrrolidone based glycerosomes coating to expand the shelf life of fresh-cut bell pepper (Capsicum annuum L. var grossum (L.) sendt). Postharvest Bio Technol 160:111039. https://doi.org/10.1016/j.postharvbio.2019.111039

    Article  Google Scholar 

  20. Vankar PS, Shukla D (2012) Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric. Appl Nanosci 2(2):163–168. https://doi.org/10.1007/s13204-011-0051-y

    Article  Google Scholar 

  21. Vanlalveni C, Lallianrawna S, Biswas A, Selvaraj M, Changmai B, Rokhum SL (2021) Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Adv. 11(5):2804–2837. https://doi.org/10.1039/D0RA09941D

    Article  Google Scholar 

  22. Stephen A, Seethalakshmi S (2013) Phytochemical synthesis and preliminary characterization of silver nanoparticles using hesperidin. J Nanosci. https://doi.org/10.1155/2013/126564

    Article  Google Scholar 

  23. Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Beukes LS (2015) Cola nitida-mediated biogenic synthesis of silver nanoparticles using seed and seed shell extracts and evaluation of antibacterial activities. BioNanoSci 5(4):196–205. https://doi.org/10.1007/s12668-015-0181-x

    Article  Google Scholar 

  24. Akinola PO, Lateef A, Asafa TB, Beukes LS, Hakeem AS, Irshad HM (2020) Multifunctional titanium dioxide nanoparticles biofabricated via phytosynthetic route using extracts of cola nitida: antimicrobial, dye degradation, antioxidant and anticoagulant activities. Heliyon 6(8):e04610. https://doi.org/10.1016/j.heliyon.2020.e04610

    Article  Google Scholar 

  25. Allafchian AR, Mirahmadi-Zare SZ, Jalali SAH, Hashemi SS, Vahabi MR (2016) Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity. J Nanostructure Chem 6(2):129–135

    Article  Google Scholar 

  26. Awwad AM, Salem NM, Abdeen AO (2013) Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Inter J Indus Chem 4(1):1–6. https://doi.org/10.1186/2228-5547-4-29

    Article  Google Scholar 

  27. Suresh U, Murugan K, Panneerselvam C, Rajaganesh R, Roni M, Al-Aoh HAN, Benelli G (2018) Suaeda maritima-based herbal coils and green nanoparticles as potential biopesticides against the dengue vector Aedes aegypti and the tobacco cutworm Spodoptera litura. Physiol Mol Plant Pathol 101:225–235. https://doi.org/10.1016/j.pmpp.2017.01.002

    Article  Google Scholar 

  28. Ovais M, Raza A, Naz S, Islam NU, Khalil AT, Ali S, Shinwari ZK (2017) Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Appl Microbiol Biotechnol 101(9):3551–3565. https://doi.org/10.1007/s00253-017-8250-4

    Article  Google Scholar 

  29. Suman TY, Rajasree SR, Ramkumar R, Rajthilak C, Perumal P (2014) The Green synthesis of gold nanoparticles using an aqueous root extract of morinda citrifolia L. Spectrochim Acta Part A Mol Biomol Spectrosc 118:11–16. https://doi.org/10.1016/j.saa.2013.08.066

    Article  Google Scholar 

  30. Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of abelmoschus esculentus and its antifungal activity. Indus Crops Prod 45:423–429. https://doi.org/10.1016/j.indcrop.2012.12.019

    Article  Google Scholar 

  31. Paul B, Bhuyan B, Purkayastha DD, Dey M, Dhar SS (2015) Green synthesis of gold nanoparticles using pogestemon benghalensis (B) O. Ktz. leaf extract and studies of their photocatalytic activity in degradation of methylene blue. Materials Lett 148:37–40. https://doi.org/10.1016/j.matlet.2015.02.054

    Article  Google Scholar 

  32. Elia P, Zach R, Hazan S, Kolusheva S, Porat ZE, Zeiri Y (2014) Green synthesis of gold nanoparticles using plant extracts as reducing agents. Inter J Nanomed 9:4007. https://doi.org/10.2147/IJN.S57343

    Article  Google Scholar 

  33. Jadoun S, Arif R, Jangid NK, Meena RK (2021) Green synthesis of nanoparticles using plant extracts: a review. Enviro Chem Lett 19(1):355–374. https://doi.org/10.1007/s10311-020-01074-x

    Article  Google Scholar 

  34. Krishnaswamy K, Vali H, Orsat V (2014) Value-adding to grape waste: green synthesis of gold nanoparticles. J food Eng 142:210–220. https://doi.org/10.1016/j.jfoodeng.2014.06.014

    Article  Google Scholar 

  35. Balamurugan M, Kaushik S, Saravanan S (2016) Green synthesis of gold nanoparticles by using peltophorum pterocarpum flower extracts. Nano Biomed Eng 8(4):213–218. https://doi.org/10.5101/nbe.v8i4.p213-218

    Article  Google Scholar 

  36. Suganthy N, Ramkumar VS, Pugazhendhi A, Benelli G, Archunan G (2018) Biogenic synthesis of gold nanoparticles from Terminalia arjuna bark extract: assessment of safety aspects and neuroprotective potential via antioxidant, anticholinesterase, and antiamyloidogenic effects. Environ Sci Pollut Res 25(11):10418–10433. https://doi.org/10.1007/s11356-017-9789-4

    Article  Google Scholar 

  37. Liu YC, Li J, Ahn J, Pu J, Rupa EJ, Huo Y, Yang DC (2020) Biosynthesis of zinc oxide nanoparticles by one-pot green synthesis using fruit extract of Amomum longiligulare and its activity as a photocatalyst. Optik 218:165245. https://doi.org/10.1016/j.ijleo.2020.165245

    Article  Google Scholar 

  38. Suresh D, Nethravathi PC, Rajanaika H, Nagabhushana H, Sharma SC (2015) Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater Sci Semicond Process 31:446–454. https://doi.org/10.1016/j.mssp.2014.12.023

    Article  Google Scholar 

  39. Happy A, Soumya M, Kumar SV, Rajeshkumar S, Sheba RD, Lakshmi T, Nallaswamy VD (2019) Phyto-assisted synthesis of zinc oxide nanoparticles using cassia alata and its antibacterial activity against escherichia coli. Biochem Biophys Rep 17:208–211. https://doi.org/10.1016/j.bbrep.2019.01.002

    Article  Google Scholar 

  40. Jamdagni P, Khatri P, Rana JS (2018) Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J King Saud Uni Sci 30(2):168–175. https://doi.org/10.1016/j.jksus.2016.10.002

    Article  Google Scholar 

  41. Salam HA, Sivaraj R, Venckatesh R (2014) Green synthesis and characterization of zinc oxide nanoparticles from ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract. Mater Lett 131:16–18. https://doi.org/10.1016/j.matlet.2014.05.033

    Article  Google Scholar 

  42. Thema FT, Manikandan E, Dhlamini MS, Maaza M (2015) Green synthesis of ZnO nanoparticles via agathosma betulina natural extract. Mater Lett 161:124–127. https://doi.org/10.1016/j.matlet.2015.08.052

    Article  Google Scholar 

  43. Abbes N, Bekri I, Cheng M, Sejri N, Cheikhrouhou M, Jun XU (2021) Green synthesis and characterization of zinc oxide nanoparticles using mulberry fruit and their antioxidant activity. Mater Sci. https://doi.org/10.5755/j02.ms.28314

    Article  Google Scholar 

  44. Rajeshkumar S, Jeevitha M (2021) Plant-mediated biosynthesis and characterization of zinc oxide nanoparticles. In Zinc-Based Nanostructures for Environ Agric Appl. https://doi.org/10.1016/B978-0-12-822836-4.00023-9

    Article  Google Scholar 

  45. Saeed M, Siddique M, Ibrahim M, Akram N, Usman M, Aleem MA, Baig A (2020) Calotropis gigantea leaves assisted biosynthesis of ZnO and Ag@ ZnO catalysts for degradation of rhodamine B dye in aqueous medium. Environ Prog Sustain Energy 39(4):e13408. https://doi.org/10.1002/ep.13408

    Article  Google Scholar 

  46. Golmohammadi M, Honarmand M, Ghanbari S (2020) A green approach to synthesis of ZnO nanoparticles using jujube fruit extract and their application in photocatalytic degradation of organic dyes. Spectrochim Acta A Mol Biomol Spectrosc 229:117961. https://doi.org/10.1016/j.saa.2019.117961

    Article  Google Scholar 

  47. Rizwan M, Amin S, Malikovna BK (2020) Green synthesis and antimicrobial potential of silver nanoparticles with Boerhavia procumbens extract. J Pure Appl Microbiol. 14(2):1437–1451. https://doi.org/10.22207/JPAM.14.2.42

    Article  Google Scholar 

  48. Devi GK, Suruthi P, Veerakumar R, Vinoth S, Subbaiya R, Chozhavendhan S (2019) A review on metallic gold and silver nanoparticles. Res J Pharm Technol 12(2):935–943. https://doi.org/10.5958/0974-360X.2019.00158.6

    Article  Google Scholar 

  49. Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB (2009) The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Inter J Antimicrob Agents 34(2):103–110. https://doi.org/10.1016/j.ijantimicag.2009.01.017

    Article  Google Scholar 

  50. Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interface Sci 166(1–2):119–135. https://doi.org/10.1016/j.cis.2011.05.008

    Article  Google Scholar 

  51. de Souza TAJ, Souza LRR, Franchi LP (2019) Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity. Ecotoxicol Environ Saf 171:691–700. https://doi.org/10.1016/j.ecoenv.2018.12.095

    Article  Google Scholar 

  52. MubarakAli D, Thajuddin N, Jeganathan K, Gunasekaran M (2011) Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B: Biointerfaces 85(2):360–365. https://doi.org/10.1016/j.colsurfb.2011.03.009

    Article  Google Scholar 

  53. Personick ML, Mirkin CA (2013) Making sense of the mayhem behind shape control in the synthesis of gold nanoparticles. J Am Chem Soc 135(49):18238–18247. https://doi.org/10.1021/ja408645b

    Article  Google Scholar 

  54. Her S, Jaffray DA, Allen C (2017) Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv Drug Deliv Rev 109:84–101. https://doi.org/10.1016/j.addr.2015.12.012

    Article  Google Scholar 

  55. Mieszawska AJ, Mulder WJ, Fayad ZA, Cormode DP (2013) Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 10(3):831–847. https://doi.org/10.1021/mp3005885

    Article  Google Scholar 

  56. Chang CC, Chen CP, Wu TH, Yang CH, Lin CW, Chen CY (2019) Gold nanoparticle-based colorimetric strategies for chemical and biological sensing applications. Nanomater 9(6):861. https://doi.org/10.3390/nano9060861

    Article  Google Scholar 

  57. Agarwal H, Kumar SV, Rajeshkumar S (2017) A review on green synthesis of zinc oxide nanoparticles–An eco-friendly approach. Res-Efficient Technol 3(4):406–413. https://doi.org/10.1016/j.reffit.2017.03.002

    Article  Google Scholar 

  58. Mohammed YH, Holmes A, Haridass IN, Sanchez WY, Studier H, Grice JE, Roberts MS (2019) Support for the safe use of zinc oxide nanoparticle sunscreens: lack of skin penetration or cellular toxicity after repeated application in volunteers. J Investig Dermatol 139(2):308–315. https://doi.org/10.1016/j.jid.2018.08.024

    Article  Google Scholar 

  59. Behravan M, Panahi AH, Naghizadeh A, Ziaee M, Mahdavi R, Mirzapour A (2019) Facile green synthesis of silver nanoparticles using berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Inter J Biol Macromol 124:148–154. https://doi.org/10.1016/j.ijbiomac.2018.11.101

    Article  Google Scholar 

  60. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using aloevera plant extract. Biotechnol Progress 22(2):577–583. https://doi.org/10.1021/bp0501423

    Article  Google Scholar 

  61. Jain D, Daima HK, Kachhwaha S, Kothari SL (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Dig J Nanomater Bio S 4(3):557–563

    Google Scholar 

  62. Amaladhas TP, Sivagami S, Devi TA, Ananthi N, Velammal SP (2012) Biogenic synthesis of silver nanoparticles by leaf extract of Cassia angustifolia. Adv Natur Sci: Nanosci Nanotechnol 3(4):045006. https://doi.org/10.1088/2043-6262/3/4/045006

    Article  Google Scholar 

  63. Roopan SM, Madhumitha G, Rahuman AA, Kamaraj C, Bharathi A, Surendra TV (2013) Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Indus Crops Products 43:631–635. https://doi.org/10.1016/j.indcrop.2012.08.013

    Article  Google Scholar 

  64. Fabiyi OA (2021) Sustainable management of meloidogyne incognita infecting carrot (daucus carota): green synthesis of silver nanoparticles with cnidoscolus aconitifolius. Vegetos 34(2):277–285. https://doi.org/10.1007/s42535-021-00216-y

    Article  Google Scholar 

  65. Saxena A, Tripathi RM, Zafar F, Singh P (2012) Green synthesis of silver nanoparticles using aqueous solution of ficus benghalensis leaf extract and characterization of their antibacterial activity. Mater lett 67(1):91–94. https://doi.org/10.1016/j.matlet.2011.09.038

    Article  Google Scholar 

  66. Baghizadeh A, Ranjbar S, Gupta VK, Asif M, Pourseyedi S, Karimi MJ, Mohammadinejad R (2015) Green synthesis of silver nanoparticles using seed extract of calendula officinalis in liquid phase. J Mol Liq 207:159–163. https://doi.org/10.1016/j.molliq.2015.03.029

    Article  Google Scholar 

  67. Kalaiselvi M, Subbaiya R, Selvam M (2013) Synthesis and characterization of silver nanoparticles from leaf extract of parthenium hysterophorus and its anti-bacterial and antioxidant activity. Int J Curr Microbiol Appl Sci 2(6):220–227

    Google Scholar 

  68. Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32(1):79–84. https://doi.org/10.1007/s00449-008-0224-6

    Article  Google Scholar 

  69. de Jesús R-B, Reyes-López SY, Larrañaga D, Estévez M, Pérez R (2017) Green synthesis of silver nanoparticles using a melissa officinalis leaf extract with antibacterial properties. Results Phy 7:2639–2643. https://doi.org/10.1016/j.rinp.2017.07.044

    Article  Google Scholar 

  70. Dubey SP, Lahtinen M, Sillanpää M (2010) Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem. 45(7):1065–1071. https://doi.org/10.1016/j.procbio.2010.03.024

    Article  Google Scholar 

  71. Patra S, Mukherjee S, Barui AK, Ganguly A, Sreedhar B, Patra CR (2015) Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater Sci Eng C 53:298–309. https://doi.org/10.1016/j.msec.2015.04.048

    Article  Google Scholar 

  72. Kumar VG, Gokavarapu SD, Rajeswari A, Dhas TS, Karthick V, Kapadia Z, Sinha S (2011) Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent cassia auriculata. Colloids Surf B: Biointerfaces 87(1):159–163. https://doi.org/10.1016/j.colsurfb.2011.05.016

    Article  Google Scholar 

  73. Boomi P, Ganesan RM, Poorani G, Prabu HG, Ravikumar S, Jeyakanthan J (2019) Biological synergy of greener gold nanoparticles by using Coleus aromaticus leaf extract. Mater Sci Eng: C 99:202–210. https://doi.org/10.1016/j.msec.2019.01.105

    Article  Google Scholar 

  74. Udayabhanu J, Kannan V, Tiwari M, Natesan G, Giovanni B, Perumal V (2018) Nanotitania crystals induced efficient photocatalytic color degradation, antimicrobial and larvicidal activity. J Photochem Photobiol B: Biol 178:496–504. https://doi.org/10.1016/j.jphotobiol.2017.12.005

    Article  Google Scholar 

  75. Abdel-Raouf N, Al-Enazi NM, Ibraheem IB (2017) Green biosynthesis of gold nanoparticles using galaxaura elongata and characterization of their antibacterial activity. Arab J Chem 10:S3029–S3039. https://doi.org/10.1016/j.arabjc.2013.11.044

    Article  Google Scholar 

  76. Tamuly C, Hazarika M, Bordoloi M (2013) Biosynthesis of Au nanoparticles by gymnocladus assamicus and its catalytic activity. Mater Lett 108:276–279. https://doi.org/10.1016/j.matlet.2013.07.020

    Article  Google Scholar 

  77. Yang N, WeiHong L, Hao L (2014) Biosynthesis of Au nanoparticles using agricultural waste mango peel extract and its in vitro cytotoxic effect on two normal cells. Mater Lett 134:67–70. https://doi.org/10.1016/j.matlet.2014.07.025

    Article  Google Scholar 

  78. Bhau BS, Ghosh S, Puri S, Borah B, Sarmah DK, Khan R (2015) Green synthesis of gold nanoparticles from the leaf extract of Nepenthes khasiana and antimicrobial assay. Adv Mater Lett 6(1):55–58. https://doi.org/10.5185/amlett.2015.5609

    Article  Google Scholar 

  79. Sivakavinesan M, Vanaja M, Annadurai G (2021) Dyeing of cotton fabric materials with biogenic gold nanoparticles. Sci Rep 11(1):1–11. https://doi.org/10.1038/s41598-021-92662-6

    Article  Google Scholar 

  80. Jahan I, Erci F, Isildak I (2019) Microwave-assisted green synthesis of non-cytotoxic silver nanoparticles using the aqueous extract of Rosa santana (rose) petals and their antimicrobial activity. Anal Lett 52(12):1860–1873. https://doi.org/10.1080/00032719.2019.1572179

    Article  Google Scholar 

  81. Sadeghi B (2015) Zizyphus mauritiana extract-mediated green and rapid synthesis of gold nanoparticles and its antibacterial activity. J Nanostruc Chem 5(3):265–273. https://doi.org/10.1007/s40097-015-0157-y

    Article  Google Scholar 

  82. Santhoshkumar J, Kumar SV, Rajeshkumar S (2017) Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technol 3(4):459–465. https://doi.org/10.1016/j.reffit.2017.05.001

    Article  Google Scholar 

  83. Ali K, Dwivedi S, Azam A, Saquib Q, Al-Said MS, Alkhedhairy AA, Musarrat J (2016) Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. J Colloid Interf Sci 472:145–156. https://doi.org/10.1016/j.jcis.2016.03.021

    Article  Google Scholar 

  84. Azizi S, Mohamad R, Bahadoran A, Bayat S, Rahim RA, Ariff A, Saad WZ (2016) Effect of annealing temperature on antimicrobial and structural properties of bio-synthesized zinc oxide nanoparticles using flower extract of Anchusa italica. J Photochem Photobiol B: Biol 161:441–449. https://doi.org/10.1016/j.jphotobiol.2016.06.007

    Article  Google Scholar 

  85. Singh A, Kaushik M (2019) Physicochemical investigations of zinc oxide nanoparticles synthesized from azadirachta indica (neem) leaf extract and their interaction with calf-thymus DNA. Results Phys 13:102168. https://doi.org/10.1016/j.rinp.2019.102168

    Article  Google Scholar 

  86. Irshad S, Salamat A, Anjum AA, Sana S, Saleem RS, Naheed A, Iqbal A (2018) Green tea leaves mediated ZnO nanoparticles and its antimicrobial activity. Cogent Chem 4(1):1469207. https://doi.org/10.1080/23312009.2018.1469207

    Article  Google Scholar 

  87. Rajeshkumar S, Lakshmi T, Naik P (2019) Recent advances and biomedical applications of zinc oxide nanoparticles. In Green Synthesis, Charact Appl Nanoparticles. https://doi.org/10.1016/B978-0-08-102579-6.00019-8

    Article  Google Scholar 

  88. Schelling M, Kim M, Otal E, Aguirre M, Hinestroza JP (2020) Synthesis of a zinc–imidazole metal–organic framework (ZIF-8) using ZnO rods grown on cotton fabrics as precursors: arsenate absorption studies. Cellulose. https://doi.org/10.1007/s10570-020-03216-4

    Article  Google Scholar 

  89. Li W, Zeng J, Shao Y (2018) Rambutãn—nephelium lappaceum. Exotic Fruits. https://doi.org/10.1016/B978-0-12-803138-4.00048-4

    Article  Google Scholar 

  90. Santhoshkumar J, Rajeshkumar S, Kumar SV (2017) Phyto-assisted synthesis, characterization and applications of gold nanoparticles–A review. Biochem Biophy Rep 11:46–57. https://doi.org/10.1016/j.bbrep.2017.06.004

    Article  Google Scholar 

  91. Zheng Y, Huang Y, Shi H, Fu L (2019) Green biosynthesis of ZnO nanoparticles by plectranthus amboinicus leaf extract and their application for electrochemical determination of norfloxacin. Inorganic Nano-Metal Chem 49(9):277–282. https://doi.org/10.1080/24701556.2019.1661441

    Article  Google Scholar 

  92. Nagajyothi PC, Cha SJ, Yang IJ, Sreekanth TVM, Kim KJ, Shin HM (2015) Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J Photochem Photobiol B: Biol 146:10–17. https://doi.org/10.1016/j.jphotobiol.2015.02.008

    Article  Google Scholar 

  93. Sundrarajan M, Ambika S, Bharathi K (2015) Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv Powder Technol 26(5):1294–1299. https://doi.org/10.1016/j.apt.2015.07.001

    Article  Google Scholar 

  94. Gulbagca F, Ozdemir S, Gulcan M, Sen F (2019) Synthesis and characterization of Rosa canina-mediated biogenic silver nanoparticles for anti-oxidant, antibacterial, antifungal, and DNA cleavage activities. Heliyon 5(12):e02980. https://doi.org/10.1016/j.heliyon.2019.e02980

    Article  Google Scholar 

  95. Thomas S, Gunasangkaran G, Arumugam VA, Muthukrishnan S (2021) Synthesis and characterization of zinc oxide nanoparticles of solanum nigrum and Its anticancer activity via the induction of apoptosis in cervical cancer. Biol Trace Ele Res. https://doi.org/10.1007/s12011-021-02898-6

    Article  Google Scholar 

  96. Rana N, Chand S, Gathania AK (2016) Green synthesis of zinc oxide nano-sized spherical particles using terminalia chebula fruits extract for their photocatalytic applications. Inter Nano Lett 6(2):91–98. https://doi.org/10.1007/s40089-015-0171-6

    Article  Google Scholar 

  97. Dobrucka R, Długaszewska J (2016) Biosynthesis and antibacterial activity of ZnO nanoparticles using trifolium pratense flower extract. Saudi J Biol Sci 23(4):517–523. https://doi.org/10.1016/j.sjbs.2015.05.016

    Article  Google Scholar 

  98. Patil SP, Kumbhar ST (2020) Vitex negundo assisted green synthesis of metallic nanoparticles with different applications: a mini review. Future J Pharm Sci 6(1):1–11. https://doi.org/10.1186/s43094-020-00111-4

    Article  Google Scholar 

  99. Abdelghany TM, Al-Rajhi AM, Al Abboud MA, Alawlaqi MM, Magdah AG, Helmy EA, Mabrouk AS (2018) Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review BioNanoSci 8(1):5–16. https://doi.org/10.1007/s12668-017-0413-3

    Article  Google Scholar 

  100. Skovmand A, Lauvås AJ, Christensen P, Vogel U, Hougaard KS, Goericke-Pesch S (2018) Pulmonary exposure to carbonaceous nanomaterials and sperm quality. Part Fibre Toxicol 15(1):1–12. https://doi.org/10.1186/s12989-018-0242-8

    Article  Google Scholar 

  101. Liu H, Lai W, Liu X, Yang H, Fang Y, Tian L, Xi Z (2021) Exposure to copper oxide nanoparticles triggers oxidative stress and endoplasmic reticulum (ER)-stress induced toxicology and apoptosis in male rat liver and BRL-3A cell. J Hazardous Mater 401:123349. https://doi.org/10.1016/j.jhazmat.2020.123349

    Article  Google Scholar 

  102. Hadrup N, Lam HR (2014) Oral toxicity of silver ions, silver nanoparticles and colloidal silver–a review. Regul Toxicol Pharmacol 68(1):1–7. https://doi.org/10.1016/j.yrtph.2013.11.002

    Article  Google Scholar 

  103. Jia M, Zhang W, He T, Shu M, Deng J, Wang J, Zeng X (2020) Evaluation of the genotoxic and oxidative damage potential of silver nanoparticles in human NCM460 and HCT116 cells. Inter J Mole Sci 21(5):1618. https://doi.org/10.3390/ijms21051618

    Article  Google Scholar 

  104. Brandelli A (2020) The interaction of nanostructured antimicrobials with biological systems: cellular uptake, trafficking and potential toxicity. Food Sci Hum Wellness 9(1):8–20. https://doi.org/10.1016/j.fshw.2019.12.003

    Article  Google Scholar 

  105. Elegbede JA, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Oladipo IC, Gueguim-Kana EB (2020) Biofabrication of gold nanoparticles using xylanases through valorization of corncob by aspergillus niger and Trichoderma longibrachiatum: antimicrobial, antioxidant, anticoagulant and thrombolytic activities. Waste Biomass Valorization 11(3):781–791. https://doi.org/10.1007/s12649-018-0540-2

    Article  Google Scholar 

  106. Adewale OB, Davids H, Cairncross L, Roux S (2019) Toxicological behavior of gold nanoparticles on various models: influence of physicochemical properties and other factors. Inter J Toxicol 38(5):357–384. https://doi.org/10.1177/1091581819863130

    Article  Google Scholar 

  107. Gunduz N, Ceylan H, Guler MO, Tekinay AB (2017) Intracellular accumulation of gold nanoparticles leads to inhibition of macropinocytosis to reduce the endoplasmic reticulum stress. Sci Rep 7(1):1–10. https://doi.org/10.1038/srep40493

    Article  Google Scholar 

  108. Deylam M, Alizadeh E, Sarikhani M, Hejazy M, Firouzamandi M (2021) Zinc oxide nanoparticles promote the aging process in a size-dependent manner. J Mater Sci: Mater Med 32(10):1–10. https://doi.org/10.1007/s10856-021-06602-x

    Article  Google Scholar 

  109. Singh S (2019) Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicol Mech Methods 29(4):300–311. https://doi.org/10.1080/15376516.2018.1553221

    Article  Google Scholar 

  110. Heshmati M, Bidgoli SA, Khoei S, Mahmoudzadeh A, Sorkhabadi SMR (2019) Cytotoxicity and genotoxicity of silver nanoparticles in chinese hamster ovary cell line (CHO-K1) cells. The Nucleus 62(3):221–225. https://doi.org/10.1007/s13237-019-00295-y

    Article  Google Scholar 

  111. Saber M, Hayaei-Tehrani RS, Mokhtari S, Hoorzad P, Esfandiari F (2021) In vitro cytotoxicity of zinc oxide nanoparticles in mouse ovarian germ cells. Toxicol InVitro 70:105032. https://doi.org/10.1016/j.tiv.2020.105032

    Article  Google Scholar 

  112. Illarionova NB, Morozova KN, Petrovskii DV, Sharapova MB, Romashchenko AV, Troitskii SY, Moshkin MP (2020) ‘Trojan-horse’stress-granule formation mediated by manganese oxide nanoparticles. Nanotoxicol 14(10):1432–1444. https://doi.org/10.1080/17435390.2020.1856433

    Article  Google Scholar 

  113. Lovén K, Dobric J, Bölükbas DA, Kåredal M, Tas S, Rissler J, Isaxon C (2021) Toxicological effects of zinc oxide nanoparticle exposure: an in vitro comparison between dry aerosol air-liquid interface and submerged exposure systems. Nanotoxicol 15(4):494–510. https://doi.org/10.1080/17435390.2021.1884301

    Article  Google Scholar 

  114. Subramaniam VD, Prasad SV, Banerjee A, Gopinath M, Murugesan R, Marotta F, Pathak S (2019) Health hazards of nanoparticles: understanding the toxicity mechanism of nanosized ZnO in cosmetic products. Drug Chem Toxicol 42(1):84–93. https://doi.org/10.1080/01480545.2018.1491987

    Article  Google Scholar 

  115. Sadeghi B, Mohammadzadeh M, Babakhani B (2015) Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: characterization and their stability. J Photochem Photobiol B: Biol 148:101–106. https://doi.org/10.1016/j.jphotobiol.2015.03.025

    Article  Google Scholar 

  116. Chen J, Yang T, Long J, Ding Y, Li J, Li X, Cao Y (2019) Palmitate enhanced the cytotoxicity of ZnO nanomaterials possibly by promoting endoplasmic reticulum stress. J Appl Toxicol 39(5):798–806. https://doi.org/10.1002/jat.3768

    Article  Google Scholar 

  117. Du J, Tang J, Xu S, Ge J, Dong Y, Li H, Jin M (2020) ZnO nanoparticles: recent advances in ecotoxicity and risk assessment. Drug Chem Toxicol 43(3):322–333. https://doi.org/10.1080/01480545.2018.1508218

    Article  Google Scholar 

  118. Zhang H, Chen F, Li Y, Shan X, Yin L, Hao X, Zhong Y (2021) More serious autophagy can be induced by ZnO nanoparticles than single-walled carbon nanotubes in rat tracheal epithelial cells. Envir Toxicol 36(2):238–248. https://doi.org/10.1002/tox.23029

    Article  Google Scholar 

  119. Anyanwu BO, Orisakwe OE (2020) Current mechanistic perspectives on male reproductive toxicity induced by heavy metals. J Envir Sci Health Part C 38(3):204–244. https://doi.org/10.1080/26896583.2020.1782116

    Article  Google Scholar 

  120. Ziglari T, Anderson DS, Holian A (2020) Determination of the relative contribution of the non-dissolved fraction of ZnO NP on membrane permeability and cytotoxicity. Inhalation Toxicol. 32(2):86–95. https://doi.org/10.1080/08958378.2020.1743394

    Article  Google Scholar 

  121. Shah MM, Ren W, Irudayaraj J, Sajini AA, Ali MI, Ahmad B (2021) Colorimetric detection of organophosphate pesticides based on acetylcholinesterase and cysteamine capped gold nanoparticles as nanozyme. Sensors 21(23):8050. https://doi.org/10.3390/s21238050

    Article  Google Scholar 

  122. Ahmad K, Khan S, Yasin MT, Hussain S, Ahmad R, Ahmad N, Bokhari SAI (2021) Enhanced starch hydrolysis by α-amylase using copper oxide nanowires. Appl Nanosci. https://doi.org/10.1007/s13204-021-01931-3

    Article  Google Scholar 

  123. Sameena VP, Thoppil JE (2022) Green synthesis of silver nanoparticles from Euphorbia and its biological activities. Nanotechnol Environ Eng. https://doi.org/10.1007/s41204-022-00232-6

    Article  Google Scholar 

  124. Hano C, Abbasi BH (2021) Plant-based green synthesis of nanoparticles: Production, characterization and applications. Biomolecules 12(1):31. https://doi.org/10.3390/biom12010031

    Article  Google Scholar 

  125. Paul A, Roychoudhury A (2021) Go green to protect plants: repurposing the antimicrobial activity of biosynthesized silver nanoparticles to combat phytopathogens. Nanotechnol Environ Eng 6(1):1–22. https://doi.org/10.1007/s41204-021-00103-6

    Article  Google Scholar 

  126. Gupta S, Tejavath KK (2021) Phytosynthesized nanoparticle-directed catalytic reduction of synthetic dyes: beast to beauty. Nanotechnol Environ Eng 6(1):1–36. https://doi.org/10.1007/s41204-021-00101-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Fazli Wahid, Department of Biomedical Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology Haripur, Pakistan, for his technical assistance and editing of the manuscript.

Funding

No funding taking from any agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khurshid Ahmad.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Consent for publication

The authors give copyrights to the journal as per the rules.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, M.M., Ahmad, K., Ahmad, B. et al. Recent trends in green synthesis of silver, gold, and zinc oxide nanoparticles and their application in nanosciences and toxicity: a review. Nanotechnol. Environ. Eng. 7, 907–922 (2022). https://doi.org/10.1007/s41204-022-00287-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41204-022-00287-5

Keywords

Navigation