Skip to main content

Advertisement

Log in

Engineered nanomaterial and their interactions with plant–soil system: a developmental journey and opposing facts

  • Critical Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

Nanotechnology in recent past has made a tremendous contribution in sustaining global food production. This has led to rapid development and introduction to several engineered nanomaterials to the living system. Several crop production and management strategies were improved through nanoparticles activities owing to higher crop productivity, quality produce, novel cultivars, efficient nutrient as well as agrochemicals utilization and detecting crop infirmities prior in hand. These achievements set a landmark for overcoming potential threats in modern farming. Accompanying these advantages originates nanotoxicology in soil and plant environment when nanomaterials engaged are not strictly controlled leading to free circulation in the biological system. Nanotoxicity can be exerted in the form of phytotoxicity, cytotoxicity, genotoxicity, ecotoxicity and other health hazards. Toxicity in plants are majorly exhibited in the form of germination inhibition, growth restriction in shoots and roots. Regardless of immense contributions made by nanotechnology in modern science, each and every tools or elements must undergo safety concerns on plants, human and environment prior to the mass dispersal. Thus, effective assessment ensuring biosafety and eco-safety should be made during delivery of such technological developments. Therefore, this paper reviews at engineered nanomaterials synthesis, their interaction with plant and soil system, merits along recent discoveries and their possible threats to environmental components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FAO (2014) The state of food and agriculture 2014 in brief. Food and Agricultural Organization of the United Nations, Geneva

    Google Scholar 

  2. Delgado-Ramos GC (2014) Nanotechnology in Mexico: global trends and national implications for policy and regulatory issues. Technol Soc 37(1):4–15

    Article  Google Scholar 

  3. Safari J, Zarnegar Z (2014) Advanced drug delivery systems nanotechnology of health design: a review. J Saudi Chem Soc 18(2):85–99

    Article  Google Scholar 

  4. VilelaNeto OP (2014) Intelligent computational nanotechnology: the role of computational intelligence in the development of nanoscience and nanotechnology. J Comput Theor Nanosci 11(4):928–944

    Article  Google Scholar 

  5. Dutschk V, Karapantsios T, Liggieri L, McMillan N, Miller R, Starov VM (2014) Smart and green interfaces: from single bubbles/drops to industrial environmental and biomedical applications. Adv Colloid Interface Sci 209:109–126

    Article  Google Scholar 

  6. Al-Halafi AM (2014) Nanocarriers of nanotechnology in retinal diseases. Saudi J Ophthalmol 28:304–309

    Article  Google Scholar 

  7. Safiuddin M, Gonzalez M, Cao JW, Tighe SL (2014) State-of-the-art report on use of nano-materials in concrete. Int J Pavement Eng 15:940–949

    Article  Google Scholar 

  8. Zhou X, Torabi M, Lu J, Shen R, Zhang K (2014) Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications. ACS Appl Mater Interfaces 6(5):3058–3074

    Article  Google Scholar 

  9. Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594. https://doi.org/10.1016/j.tifs.2011.09.004

    Article  Google Scholar 

  10. Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400. https://doi.org/10.1016/j.foodres.2015.01.005

    Article  Google Scholar 

  11. Parisi C, Vigani M, Rodriguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10:124–127. https://doi.org/10.1016/j.nantod.2014.09.009

    Article  Google Scholar 

  12. Musee N (2011) Nanowastes and the environment: potential new waste management paradigm. Environ Int 37(1):112–128

    Article  Google Scholar 

  13. Foss HS, Baun A, Michelson ES, Kamper A, Borling P, Stuer-Lauridsen F (2009) Nanomaterials in consumer products. Nanomater Risks Benefits 359–367

  14. Robert JG, Kelly H, Nancy DD, Davis SB (2009) Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107(2):404–415

    Article  Google Scholar 

  15. Bandyopadhyay S, Peralta-Videa JR, Gardea-Torresdey JL (2013) Advanced analytical techniques for the measurement of nanomaterials in food and agricultural samples: a review. Environ Eng Sci 30(3):118–125

    Article  Google Scholar 

  16. Nadiminti PP, Dong YD, Sayer C et al (2013) Nanostructured liquid crystalline particles as an alternative delivery vehicle for plant agrochemicals. ACS Appl Mater Interfaces 5(5):1818–1826

    Article  Google Scholar 

  17. Lombi E, Nowack B, Baun A, McGrath SP (2012) Evidence for effects of manufactured nanomaterials on crops is inconclusive. Proc Natl Acad Sci USA 109(49) Article IDE3336

  18. Bagheri H, Ayazi Z, Es’haghi A, Aghakhani A (2012) Reinforced polydiphenylamine nanocomposite for microextraction in packed syringe of various pesticides. J Chromatogr A 1222:13–21

    Article  Google Scholar 

  19. GhormadeV DMV, Paknikar KM (2011) Perspectives for nanobiotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803

    Article  Google Scholar 

  20. KhiewP, Chiu W, Tan T, Radiman S, Abd-Shukor R, Chia CH (2011) Capping effect of palm-oil based organometallic ligand towards the production of highly monodispersed nanostructured material. In: Palm oil: nutrition, uses and impacts. Nova Science, pp 189–219

  21. Hassan F, Shahram A, Farzin A, Saeed JP (2013) Comparative effects of nanosized and bulk titanium dioxide concentrations on medicinal plant Salvia officinalis L. AnnuRev Cell Biol 3(4):814–824

    Google Scholar 

  22. De Oliveira JL, Campos EVR, Bakshi M, Abhilasj PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32(8):1550–1561

    Article  Google Scholar 

  23. Valdes MG, Gonzalez ACV, Calzon JAG, Diaz-Garcia ME (2009) Analytical nanotechnology for food analysis. Microchima Act 166:1–19

    Article  Google Scholar 

  24. Aragay G, Pons J, Ros J, Merkoci A (2010) Aminopyrazole-based ligand induces gold nanoparticle formation and remains available for heavy metal ions sensing. A simple “mix and detect” approach. Langmuir 26:10165–10170

    Article  Google Scholar 

  25. Yao J, Yang M, Duan YX (2014) Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights in to biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev 114:6130–6178

    Article  Google Scholar 

  26. Felizatto M (2001) Projeto integrado de tratamiento avancado e reuso direto de aguas residuarias. Joao Pessoa, Brazil. In: Proceedings of the 21 Congresso Brasileiro de Engenharia Sanitaria e Ambiental

  27. Jimenez B, Asano T (2008) Water reuse: an international survey of current practice, issues and needs. IWA Publishing, London

    Google Scholar 

  28. Rodriguez-Narvaez OM, Peralta-Hernandez JM, Goonetilleke A, Bandala E (2017) Treatment technologies for emerging contaminants in water: a review. Chem Eng Technol 323:361–380

    Article  Google Scholar 

  29. Scognamiglio V (2013) Nanotechnology in glucose monitoring: advances and challenges in the last 10 years. Biosens Bioelectron 47:12–2530

    Article  Google Scholar 

  30. Mousav SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1:414–419

    Google Scholar 

  31. El Beyrouthya M, El Azzia D (2014) Nanotechnologies: novel solutions for sustainable agriculture. Adv Crop Sci Technol 2(3):1–3

    Article  Google Scholar 

  32. Vanderroost M, Ragaert P, Devlieghere F, De Meulenaer B (2014) Intelligent food packaging: the next generation. Trends Food Sci Technol 39(1):47–62

    Article  Google Scholar 

  33. Sadik OA, Du N, Kariuki V, Okello V, Bushlyar V (2014) Current and emerging technologies for the characterization of nanomaterials. ACS Sustain Chem Eng 2:1707–1716. https://doi.org/10.1021/sc500175v

    Article  Google Scholar 

  34. Kookana RS, Boxall AB, Reeves PT, Ashauer R, Beulke S, Chaudhry Q et al (2014) Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J Agric Food Chem 62:4227–4240. https://doi.org/10.1021/jf500232f

    Article  Google Scholar 

  35. Malysheva A, Lombi E, Voelcker NH (2015) Bridging the divide between human and environmental nanotoxicology. Nat Nanotechnol 10:835–844. https://doi.org/10.1038/nnano.2015.224

    Article  Google Scholar 

  36. European Food Safety Authority [EFSA] (2009) The potential risks arising from nanoscience and nanotechnologies on food and feed safety – Scientific. Opinion of the Scientific Committee. EFSA, Milan, Italy. http://www.efsa.europa.eu/en/scdocs/scdoc/958.htm

  37. FAO-WHO (2013) State of the art on the initiatives and activities relevant to risk assessment and risk management of nanotechnologies in the food and agricultural sectors. FAO/WHO Technical Paper, Rome

    Google Scholar 

  38. FSANZ (Food Standards Australia New Zealand) (2011) Nanotechnology and food. Canberra and Wellington: Food Standards Australia New Zealand. http://www.foodstandards.gov.au/consumerinformation/nanotechnologyandfoo4542.cfm

  39. Grover M, Singh SR, Venkateswarlu B (2012) Nanotechnology: scope and limitations in agriculture. Int J Nanotechnol Appl 2(1):10–38

    Google Scholar 

  40. Simakov SK (2018) Nano- and micron-sized diamond genesis in nature: an overview. Geosci Front 9(6):1849–1858

    Article  Google Scholar 

  41. Valenti G, Rampazzo E, Kesarkar S, Genovese D, Fiorani A, Zanut A, Palomba F, Marcaccio M, Paolucci F, Prodi L (2018) Electro generated chemiluminescence from metal complexes based nanoparticles for highly sensitive sensors applications. Coord Chem Rev 367:65–81

    Article  Google Scholar 

  42. Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112(4):2373–2433

    Article  Google Scholar 

  43. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8(8):2485–2491

    Article  Google Scholar 

  44. Granqvist CG, Buhrman RA (1976) Ultrafine metal particles. J Appl Phys 47(5):2200–2219

    Article  Google Scholar 

  45. Hahn H, Averback RS (1990) The production of nanocrystalline powders by magnetron sputtering. J Appl Phys 67(2):1113–1115

    Article  Google Scholar 

  46. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol-gel processing. Academic Press. ISBN 978-0-12-134970-7

  47. Weblink: https://en.wikipedia.org/wiki/Hydrothermal synthesis IST 11.45Am, 18/04/2017

  48. Patankar S, Magdum D, Patil P, Pakhale S (2012) Report on synthesis of nanoparticles using ion sputtering method

  49. Weblink: http://nanotechweb.org/cws/article/lab/37301

  50. Kandpal BC, Kumar J, Singh H (2014) Production technologies of metal matrix composite: a review. Int J Res Mech Eng Technol 4(2):27–32

    Google Scholar 

  51. Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5:233

    Article  Google Scholar 

  52. Matlin SA, Mehta G, Hopf H, Krief A (2015) The role of chemistry in inventing a sustainable future. Nat Chem 7:941–943

    Article  Google Scholar 

  53. Silva LP, Bonatto CC, Polez VLP (2016) Green synthesis of metal nanoparticles by fungi: current trends and challenges. In: Advances and applications through fungal nanobiotechnology. Springer, Berlin, pp 71–89

  54. Silva LP, Reis IG, Bonatto C (2015) Green synthesis of metal nanoparticles by plants: current trends and challenges. In: Green processes for nanotechnology. Springer, pp 259–275

  55. Lode HM, Stahlmann R, Kresken M (2013) Multiresistant pathogens—a challenge for clinicians. Zentralbl Chir 138(5):549–553

    Google Scholar 

  56. Hoag GE, Collins JB, Holcomb JL, Hoag JR, Nadagouda MN, Varma RS (2009) Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19(45):8671–8677

    Article  Google Scholar 

  57. Shahwan T, Sirriah SA, Nairat M, Boyacı E, Eroğlu AE, Scott TB, Hallam KR (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172(1):258–266

    Article  Google Scholar 

  58. Huang L, Weng X, Chen Z, Megharaj M, Naidu R (2014) Green synthesis of iron nanoparticles by various tea extracts: comparative study of the reactivity. Spectrochim Acta A Mol Biomol Spectrosc 130:295–301

    Article  Google Scholar 

  59. Kumar KM, Mandal BK, Kumar KS, Reddy PS, Sreedhar B (2013) Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spectrochim Acta A Mol Biomol Spectrosc 102:128–133

    Article  Google Scholar 

  60. Thakur S, Karak N (2014) One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efficient organic and inorganic pollutants removal. Mater Chem Phys 144(3):425–432

    Article  Google Scholar 

  61. Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, Hoag GE, Suib SL (2010) Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 27(1):264–271

    Article  Google Scholar 

  62. Wang T, Lin J, Chen Z, Megharaj M, Naidu R (2014) Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J Clean Prod 83:413–419

    Article  Google Scholar 

  63. Senthil M, Ramesh C (2012) Biogenic synthesis of Fe3O34 nanoparticles using Tridax procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa. Dig J Nanomater Biostruct 7(4):1655–1660

    Google Scholar 

  64. Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. Emerg Technol Manag Crop Stress Toler Biol Tech 1:159–180

    Google Scholar 

  65. Remédios C, Rosário F, Bastos V (2012). Environmental nanoparticles interactions with plants: morphological, physiological, and genotoxic aspects, Article ID 751686. https://doi.org/10.1155/2012/751686

  66. Taylor AF, Rylott EL, Anderson CW, Bruce NC (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS ONE 9:e93793. https://doi.org/10.1371/journal.pone.0093793

    Article  Google Scholar 

  67. Zhao L, Peralta-Videa JR, Varela-Ramirez A et al (2012) Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: insight into the uptake mechanism. J Hazard Mater 225:131–138

    Article  Google Scholar 

  68. Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81

    Article  Google Scholar 

  69. Aslani F, Bagheri S, MuhdJulkapli N, Juraimi AS, Hashemi FSG, Baghdadi A (2014) Effects of engineered nanomaterials on plants growth: an overview. Sci World J

  70. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  Google Scholar 

  71. Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13(4):822–828

    Article  Google Scholar 

  72. Pérez-de-Luque A (2017) Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci. https://doi.org/10.3389/fenvs.2017.00012

    Article  Google Scholar 

  73. Iqbal MS, Singh AK, Singh SP, Ansari MI (2020) Nanoparticles and plant interaction with respect to stress response. In: Bhushan I, Singh V, Tripathi D (eds) Nanomaterials and environmental biotechnology. Nanotechnology in the life sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-34544-0_1

  74. Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 149:167–192. https://doi.org/10.1046/j.14698137.2001.00034.x

    Article  Google Scholar 

  75. Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124. https://doi.org/10.1046/j.1365-3040.2003.00950

    Article  Google Scholar 

  76. DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91. https://doi.org/10.1038/nnano.2010.2

    Article  Google Scholar 

  77. Serik GO, Ainur I, Murat K, Tetsuo M, Masaki I (1996) Silicon carbide fiber-mediated DNA delivery into cells of wheat (Triticumac stivum L.) mature embryos. Plant Cell Rep 16(3–4):133–136

    Article  Google Scholar 

  78. Babu S, Joseph S (2016) Effect of nano materials on properties of soft soil. Int J Sci Res 5:634–637

    Google Scholar 

  79. Alireza SGS, Mohammad MS, Hasan BM (2013) Application of nanomaterial to stabilize a weak soil. In: International conference on case histories in geotechnical engineering, p 5. https://scholarsmine.mst.edu/icchge/7icchge/session_06/5

  80. Borm P, Klaessig FC, Landry TD et al (2006) Research strategies for safety evaluation of nanomaterials, Part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90(1):23–32

    Article  Google Scholar 

  81. Unrine JM, Hunyadi SE, Tsyusko OV, Rao W, Shoults WA, Bertsch PM (2010) Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida). Environ Sci Technol 44(21):8308–8313

    Article  Google Scholar 

  82. Klaine SJ, Alvarez PJJ, Batley GE et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    Article  Google Scholar 

  83. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ et al (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386. https://doi.org/10.1007/s10646-008-0214-0

    Article  Google Scholar 

  84. Yadav S, Saleem H, Ibrar I, Naji O, Hawari AA, Alanezi AA, Zaidi SJ, Altaee A, Zhou J (2020) Recent developments in forward osmosis membranes using carbon based nanomaterials. Desalination 482:114375

    Article  Google Scholar 

  85. Neamtu I, Alina GR, Alina D, Loredana EN, Aurica PC (2017) Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv 24(1):539–557

    Article  Google Scholar 

  86. Molina M, Mazdak A-B, Juan B, Julian B, Enrico M, Marcelo C (2015) Stimuli-responsive nanogel composites and their application in nanomedicine. Chem Soc Rev 44(17):6161–6186

    Article  Google Scholar 

  87. Naderi MR, Abedi A (2012) Application of nanotechnology in agriculture and refinement of environmental pollutants. J Nanotechnol 11(1):18–26

    Google Scholar 

  88. Emadian SE (2017) Physiological responses of loblolly pine (Finus taeda L.) to silicon and water Stress, Texas A & M Univ, College Station, pp 27–37 (Ph.D. Thesis, Diss. Abst.AAC8815865)

  89. Milani N, McLaughlin MJ, Stacey SP, Kirby JK, Hettiarachchi GM, Beak DG, Cornelis G (2012) Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agric Food Chem 60(16):3991–3998

    Article  Google Scholar 

  90. Raliya R, Saharan V, Dimkpa C, Biswas P (2017) Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem 66(26):6487–6503

    Article  Google Scholar 

  91. Sharmila RC (2010) Nutrient release pattern of nano-fertilizer formulations. Tamil Nadu Agricultural University, Coimbatore

    Google Scholar 

  92. Corradini E, Moura MR, Mattoso LHC (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4(8):509–515

    Article  Google Scholar 

  93. Prasad TNVKV, Elumalai EK (2011) Biofabrication of Ag nanoparticles using Moring aoleifera leaf extract and their antimicrobial activity. Asian Pac J Trop Biomed 1(6):439–442

    Article  Google Scholar 

  94. Matinise N, Fuku XG, Kaviyarasu K, Mayedwa N, Maaza M (2017) ZnO nanoparticles via Moring aoleifera green synthesis: physical properties & mechanism of formation. Appl Surf Sci 406:339–347

    Article  Google Scholar 

  95. Stan M, Popa A, Toloman D, Dehelean A, Lung I, Katona G (2015) Enhanced photocatalytic degradation properties of zinc oxide nanoparticles synthesized by using plant extracts. Mater Sci Semicond Process 39:23–29

    Article  Google Scholar 

  96. Devatha CP, Thalla AK, Katte SY (2016) Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. J Clean Prod 139:1425–1435

    Article  Google Scholar 

  97. Elemike EE, Uzoh IM, Onwudiwe DC, Babalola OO (2019) The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Appl Sci 9(3):499

    Article  Google Scholar 

  98. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer, Cham, pp 307–319

    Chapter  Google Scholar 

  99. Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64:1447–1483

    Article  Google Scholar 

  100. Kah M, Weniger AK, Hofmann T (2016) Impacts of (Nano) formulations on the fate of an insecticide in soil and consequences for environmental exposure assessment. Environ Sci Technol 50:10960–10967

    Article  Google Scholar 

  101. de Oliveira JL, Campos EV, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32:1550–1561

    Article  Google Scholar 

  102. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  Google Scholar 

  103. Memarizadeh N, Ghadamyari M, Adeli M, Talebi K (2014) Preparation, characterization and efficiency of nanoencapsulated imidacloprid under laboratory conditions. Ecotoxicol Environ Saf 107:77–83

    Article  Google Scholar 

  104. Maruyama CR, Guilger M, Pascoli M, Bileshy-José N, Abhilash PC, Fraceto LF et al (2016) Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci Rep 6:23854

    Article  Google Scholar 

  105. Jerobin J, Sureshkumar RS, Anjali CH, Mukherjee A, Chandrasekaran N (2012) Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A. Carbohydr Polym 90:1750–1756

    Article  Google Scholar 

  106. Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65(5):540–545

    Article  Google Scholar 

  107. Manjunatha SB, Biradar DP, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. J Farm Sci 29(1):1–13

    Google Scholar 

  108. Satapanajaru T, Anurakpongsatorn P, Pengthamkeerati P, Boparai H (2008) Remediation of atrazine-contaminated soil and water by nanozerovalent iron. Water Air Soil Pollut 192(1–4):349–359

    Article  Google Scholar 

  109. Jiang LC, Basri M, Omar D, Rahman MBA, Salleh AB, Zaliha RN et al (2012) Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA) formulations in controlling Eleusine indica (E. indica). Pest Biochem Physiol 102:19–29

    Article  Google Scholar 

  110. Grillo R, Melo NFS, de Lima R, Lourenço RW, Rosa AH, Fraceto LF (2010) Characterization of atrazine-loaded biodegradablepoly(hydroxybutyrate-co-hydroxyvalerate) microspheres. J Polym Environ 18:26–32

    Article  Google Scholar 

  111. Hussein MZ, Yahaya AH, Zainal Z, Kian LH (2005) Nanocomposite-based controlled release formulation of an herbicide, 2,4-dichlorophenoxyacetateincapsulated in zinc-aluminium-layered doublehydroxide. Sci Technol Adv Mater 6:956–962

    Article  Google Scholar 

  112. Moraru CI, Panchapakesan CPH, Takhistov Q, Liu PS, Kokini JL (2003) Nanotechnology: a new frontier in food science. Food Technol 57(12):24–29

    Google Scholar 

  113. Darder M, Aranda P, Ruiz-Hitzky E (2007) Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv Mater 19(10):1309–1319

    Article  Google Scholar 

  114. Sinha Ray S, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079

    Article  Google Scholar 

  115. Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34(2):125–155

    Article  Google Scholar 

  116. Allahvaisi S (2016) Effects of silver nanoparticles (AgNPs) and polymers on stored pests for improving the industry of packaging foodstuffs. J Entomol Zool Stud 4(4):633–640

    Google Scholar 

  117. Milanez DH, Amaral RM, Faria LIL, Gregolin JAR (2013) Assessing nanocellulose developments using science and technology indicators. Mater Res 16(3):635–641

    Article  Google Scholar 

  118. Li S, Simonian A, Chin BA (2010) Sensors for agriculture and the food industry. Electrochem Soc Interface 19:41–46

    Article  Google Scholar 

  119. Legin A, Rudnitskaya A, Lvova L, Vlasov Y, Di Natale C, Amico AD (2003) Evaluation of Italian wine by the electronic tongue: recognition, quantitative analysis and correlation with human sensory perception. Anal Chim Acta 484:33–44

    Article  Google Scholar 

  120. Ingale AG, Chaudhari A (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechnol 4(2):1–7

    Article  Google Scholar 

  121. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, Di Ventra M, Garaj S, Hibbs A, Huang X, Jovanovich SB (2010) The potential and challenges of nanopore sequencing. In: Nanoscience and technology: a collection of reviews from Nature Journals, 261–268

  122. Demirer GS, Zhang H, Matos JL, Goh NS, Cunningham FJ, Sung Y, Chang R, Aditham AJ, Chio L, Cho MJ et al (2019) High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat Nanotechnol 14(5):456–464

    Article  Google Scholar 

  123. Tripathi DK, Shweta SS et al (2017) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12

    Article  Google Scholar 

  124. Deng YQ, White JC, Xing BS (2014) Interactions between engineered nanomaterials and agricultural crops: implications for food safety. J Zhejiang Univ Sci A15:552–572

    Article  Google Scholar 

  125. Anjum NA, Gill SS, Duarte AC et al (2013) Silver nanoparticles in soil–plant systems. J Nanopart Res 15:1896–1897

    Article  Google Scholar 

  126. Lee WM, Kwak JI, An YJ (2012) Effect of silver nanoparticles in crop plants Phaseolus radiates and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499

    Article  Google Scholar 

  127. Begum P, Ikhtiari R, Fugetsu B (2014) Potential impact of multi-walled carbon nanotubes exposure to the seedling stage of selected plant species. Nanomaterials 4:203–221

    Article  Google Scholar 

  128. Thuesombat P, Hannongbua S, Akasit S et al (2014) Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Safe 104:302–309

    Article  Google Scholar 

  129. Lin SJ, Reppert J, Hu Q et al (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132

    Google Scholar 

  130. Boonyanitipong P, Kositsup B, Kumar P et al (2011) Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. Int J Biosci Biochem Bioinform 1(4):282–285

    Google Scholar 

  131. Chen R, Ratnikova TA, Stone MB et al (2010) Differential uptake of carbon nanoparticles by plant and mammalian cells. Small 6:612–617

    Article  Google Scholar 

  132. Atha DH, Wang HH, Petersen EJ et al (2012) Copper oxide nanoparticle mediated DNA damage interrestrial plant models. Environ Sci Technol 46:1819–1827

    Article  Google Scholar 

  133. Xiang L, Zhao HM, Li YW et al (2015) Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ Sci Pollut Res 22:10452–10462

    Article  Google Scholar 

  134. Sabo-Attwood T, Unrine JM, Stone JW et al (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6:353–360

    Article  Google Scholar 

  135. Joner EJ, Hartnik T, Amundsen CE (2008) Environmental fate and ecotoxicity of engineered nanoparticles. In: Norwegian Pollution Control Authority Report no. TA2304/2007, Bioforsk, Ås, pp 1–64

  136. Zhu X, Zhu L, Li Y, Duan Z, Chen W, Alvarez PJJ (2007) Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates (nC60) and fullerol. Environ Toxicol Chem 26(5):976–979

    Article  Google Scholar 

  137. Panyala NR, Peña-Méndez EM, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed 6(3):117–129

    Article  Google Scholar 

  138. Kumari M, Mukherjee A, Chandrasekaron N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246

    Article  Google Scholar 

  139. Pulate PV, Ghurde MU, Deshmukh VR (2011) Cytological effects of the biological and chemical silver-nanoparticles in Allium cepa L. Int J Innov Bio Sci 1:32–35

    Google Scholar 

  140. Tanti B, Kumar Das A, Kakati H, Chowdhury D (2012) Cytotoxic effect of silver-nanoparticles on root meristem of Allium sativum L. J Res Nanobiotechnol 1:001–008

    Google Scholar 

  141. Abou-Zeid HM, Moustafa Y (2014) Physiological and cytogenetic response of wheat and barley to silver nanopriming treatment. Int J Appl Biol Pharm Technol 5:265–278

    Google Scholar 

  142. Babu K, Deepa M, Shankar S, Rai S (2008) Effect of nano-silver on cell division and mitotic chromosomes, a prefatory siren. Internet J Nanotechnol 2:2–7

    Google Scholar 

  143. Dash A, Singh AP, Chaudhary BR, Singh SK, Dash D (2012) Effect of Silver nanoparticles on growth of eukaryotic green algae. Nano Micro Lett 4:158–165

    Article  Google Scholar 

  144. Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of Titanium dioxide, TiO2 nanoparticles at two trophic levels, plant and human lymphocytes. Chemosphere 81:1253–1262

    Article  Google Scholar 

  145. Ghosh M, Chakraborty A, Bandyopadhyay M, Mukherjee A (2011) Multiwalled carbon nanotubes, MWCNT., induction of DNA damage in plant and mammalian cells. J Hazard Mater 197:327–336

    Article  Google Scholar 

  146. Raskar SV, Laware SL (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol Appl Sci 3:467–473

    Google Scholar 

  147. López-Moreno ML, De la Rosa G, Hernández-Viezcas ÁJ, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean, Glycine max. plants. Environ Sci Technol 44:7315–7320

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayanglambam Chandrakumar Singh.

Ethics declarations

Conflict of interest

The authors sincerely declare that they have no conflicts of interests in publishing this review paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanu, N.B., Alice, A.K., Thokchom, A. et al. Engineered nanomaterial and their interactions with plant–soil system: a developmental journey and opposing facts. Nanotechnol. Environ. Eng. 6, 36 (2021). https://doi.org/10.1007/s41204-021-00130-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41204-021-00130-3

Keywords

Navigation