Skip to main content

Advertisement

Log in

Application of strontium-based nanoparticles in medicine and environmental sciences

  • Critical Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

The application of nanoparticles is continuously increasing in numerous fields including, medicine and biology, drug delivery, electronic devices, biosensors, catalysts, and agricultural as well as industrial science. Among the nanoparticles, metallic nanoparticles have gained significant interest in the past few years due to their unique physical and chemical characters. Strontium belongs to Group II metallic elements of the periodic table, the same group as calcium and magnesium. Conventionally, strontium is used in bone regeneration, growth stimulant, and ability to stimulate calcium signaling. Henceforth, strontium-based nanoparticles have gained interest in the field of medicine and dentistry due to their similar property with calcium. Besides that, strontium-conjugated nanomaterials exhibit the antimicrobial ability and are efficient in the removal of toxic contaminants from industrial wastewater. Strontium nanoparticles are used in targeted drug delivery and can elicit a prolonged immune response, thus can act as a good immunotherapeutic agent. The applications of strontium nanoparticles have also been found in diabetic patients, where they can control the insulin release and thus regulate the pathophysiology of diabetes. Strontium nanoparticles are also used in wastewater treatment, agriculture, and as gas sensors to sense several toxic gases. The wide application of strontium nanoparticles in several filed of medicine and environmental sciences is summarized in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2:83–92

    Google Scholar 

  2. Joseph T, Morrison M (2006) Nanotechnology in agriculture and food. Nanoforum Rep 2:2–3

    Google Scholar 

  3. Morigi V et al (2012) Nanotechnology in medicine: from inception to market domination. J Drug Deliv. https://doi.org/10.1155/2012/389485

    Article  Google Scholar 

  4. Laurent S et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  Google Scholar 

  5. Strambeanu N et al (2015) Nanoparticles: definition, classification and general physical properties. Nanoparticles’ promises and risks. Springer, pp 3–8

    Chapter  Google Scholar 

  6. Murthy SK (2007) Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomed 2(2):129

    Google Scholar 

  7. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931

    Article  Google Scholar 

  8. Mody VV et al (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2(4):282

    Article  Google Scholar 

  9. Kumar H et al (2018) Metallic nanoparticle: a review. Biomed J Sci Tech Res 4(2):3765–3775

    Google Scholar 

  10. Piñón-Segundo E, Mendoza-Muñoz N, Quintanar-Guerrero D (2013) Nanoparticles as dental drug-delivery systems. Nanobiomaterials in clinical dentistry. Elsevier, pp 475–495

    Chapter  Google Scholar 

  11. Mihranyan A, Ferraz N, Strømme M (2012) Current status and future prospects of nanotechnology in cosmetics. Prog Mater Sci 57(5):875–910

    Article  Google Scholar 

  12. Peng S et al (2009) Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cell Physiol Biochem 23(1–3):165–174

    Article  Google Scholar 

  13. Gates C, Ananyev G, Dismukes GC (2016) The strontium inorganic mutant of the water oxidizing center (CaMn4O5) of PSII improves WOC efficiency but slows electron flux through the terminal acceptors. Biochim Biophys Acta Bioenerg 1857(9):1550–1560

    Article  Google Scholar 

  14. Silva GAB et al (2018) Effects of strontium ranelate treatment on osteoblasts cultivated onto scaffolds of trabeculae bovine bone. J Bone Miner Metab 36(1):73–86

    Article  Google Scholar 

  15. Almeida MM et al (2016) Strontium ranelate increases osteoblast activity. Tissue Cell 48(3):183–188

    Article  Google Scholar 

  16. Vezzoli G et al (1998) Strontium absorption and excretion in normocalciuric subjects: relation tocalcium metabolism. Clin Chem 44(3):586–590

    Article  Google Scholar 

  17. Agrawal S et al (2016) Surfactant free novel one-minute microwave synthesis, characterization and cell toxicity study of mesoporous strontium hydroxyapatite nanorods. RSC Adv 6(97):94921–94926

    Article  Google Scholar 

  18. Rynjah CV et al (2018) Evaluation of the antidiabetic property of aqueous leaves extract of Zanthoxylum armatum DC, using in vivo and in vitro approaches. J Tradit Complement Med 8(1):134–140

    Article  Google Scholar 

  19. Gharbi O et al (2018) Chromate replacement: what does the future hold? NPJ Mat Deg 2(1):1–8

    Google Scholar 

  20. Lv T et al (2019) Novel calcitonin gene-related peptide/chitosan–strontium–calcium phosphate cement: enhanced proliferation of human umbilical vein endothelial cells in vitro. J Biomed Mater Res B Appl Biomater 107(1):19–28

    Article  Google Scholar 

  21. Nemtoi A et al (2017) The effects of insulin and strontium ranelate on guided bone regeneration in diabetic rats. Rev Chim (Bucharest) 68:693–697

    Article  Google Scholar 

  22. Lode A et al (2018) Strontium-modified premixed calcium phosphate cements for the therapy of osteoporotic bone defects. Acta Biomater 65:475–485

    Article  Google Scholar 

  23. Patel U et al (2019) In vitro cellular testing of strontium/calcium substituted phosphate glass discs and microspheres shows potential for bone regeneration. J Tissue Eng Regen Med 13(3):396–405

    Article  Google Scholar 

  24. Thormann U et al (2013) Bone formation induced by strontium modified calcium phosphate cement in critical-size metaphyseal fracture defects in ovariectomized rats. Biomaterials 34(34):8589–8598

    Article  Google Scholar 

  25. Kuo Y-C, Chen C-W (2017) Neuroregeneration of induced pluripotent stem cells in polyacrylamide–chitosan inverted colloidal crystal scaffolds with poly (lactide-co-glycolide) nanoparticles and transactivator of transcription von Hippel–Lindau peptide. Tissue Eng Part A 23(7–8):263–274

    Article  Google Scholar 

  26. Elumalai A (2020) Using strontium coated clay nanoparticles for bone regeneration and other biomedical applications

  27. Fekri HS et al (2019) Green synthesis of strontium nanoparticles self-assembled in the presence of carboxymethyl cellulose: an in vivo imaging study. Luminescence 34(8):870–876

    Article  Google Scholar 

  28. Hekimoğlu AP, Çalış M, Ayata G (2019) Effect of strontium and magnesium additions on the microstructure and mechanical properties of Al–12Si alloys. Met Mater Int 25(6):1488–1499

    Article  Google Scholar 

  29. Zhao P et al (2007) Effects of strontium and titanium on the microstructure, tensile properties and creep behavior of AM50 alloys. Mater Sci Eng A 444(1–2):318–326

    Article  Google Scholar 

  30. Guan R-G et al (2013) Development and evaluation of a magnesium–zinc–strontium alloy for biomedical applications—alloy processing, microstructure, mechanical properties, and biodegradation. Mater Sci Eng C 33(7):3661–3669

    Article  Google Scholar 

  31. Schumacher M et al (2013) A novel and easy-to-prepare strontium(II) modified calcium phosphate bone cement with enhanced mechanical properties. Acta Biomater 9(7):7536–7544

    Article  Google Scholar 

  32. Yang F et al (2011) Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells 29(6):981–991

    Article  Google Scholar 

  33. Takaoka S et al (2010) The Calcium-sensing Receptor (CaR) is involved in strontium ranelate-induced osteoblast differentiation and mineralization. Horm Metab Res 42(09):627–631

    Article  Google Scholar 

  34. Louis F et al (2017) RhoGTPase stimulation is associated with strontium chloride treatment to counter simulated microgravity-induced changes in multipotent cell commitment. NPJ Micrograv 3(1):1–12

    Article  Google Scholar 

  35. Aimaiti A et al (2017) Low-dose strontium stimulates osteogenesis but high-dose doses cause apoptosis in human adipose-derived stem cells via regulation of the ERK1/2 signaling pathway. Stem Cell Res Ther 8(1):1–12

    Article  Google Scholar 

  36. Mousavi SR et al (2019) A novel and reusable magnetic nanocatalyst developed based on graphene oxide incorporated strontium nanoparticles for the facial synthesis of β-enamino ketones under solvent-free conditions. Appl Organomet Chem 33(1):e4644

    Article  Google Scholar 

  37. Marie P et al (2001) Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 69(3):121–129

    Article  Google Scholar 

  38. Verberckmoes SC, De Broe ME, D’Haese PC (2003) Dose-dependent effects of strontium on osteoblast function and mineralization. Kidney Int 64(2):534–543

    Article  Google Scholar 

  39. Qiu K et al (2006) Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds. Biomaterials 27(8):1277–1286

    Article  Google Scholar 

  40. Wu C et al (2007) The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Biomaterials 28(21):3171–3181

    Article  Google Scholar 

  41. Gentleman E et al (2010) The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials 31(14):3949–3956

    Article  Google Scholar 

  42. Wu C et al (2012) Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering. Acta Biomater 8(10):3805–3815

    Article  Google Scholar 

  43. Ullah I et al (2018) Simultaneous co-substitution of Sr2+/Fe3+ in hydroxyapatite nanoparticles for potential biomedical applications. Cer Int 44(17):21338–21348

    Article  Google Scholar 

  44. Panseri S et al (2012) Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behaviour. J Nanobiotechnol 10(1):1–10

    Article  Google Scholar 

  45. Erkmen Z, Genc Y, Oktar F (2007) Microstructural and mechanical properties of hydroxyapatite–zirconia composites. J Am Ceram Soc 90(9):2885–2892

    Article  Google Scholar 

  46. Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7(7):2769–2781

    Article  Google Scholar 

  47. Li W et al (2018) Electrospinning of Polycaprolactone/Pluronic F127 dissolved in glacial acetic acid: fibrous scaffolds fabrication, characterization and in vitro evaluation. J Biomater Sci Polym Ed 29(10):1155–1167

    Article  Google Scholar 

  48. Wang L et al (2020) Fabrication and characterization of strontium-hydroxyapatite/silk fibroin biocomposite nanospheres for bone-tissue engineering applications. Int J Biol Macromol 142:366–375

    Article  Google Scholar 

  49. Balamurugan A et al (2006) Synthesis and characterisation of sol gel derived bioactive glass for biomedical applications. Mater Lett 60(29–30):3752–3757

    Article  Google Scholar 

  50. Lopez-Esteban S et al (2003) Bioactive glass coatings for orthopedic metallic implants. J Eur Ceram Soc 23(15):2921–2930

    Article  Google Scholar 

  51. Ji L et al (2015) In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites. Mater Sci Eng C 46:1–9

    Article  Google Scholar 

  52. Arepalli SK et al (2016) Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses. Mater Sci Eng C 69:108–116

    Article  Google Scholar 

  53. Özarslan AC, Yücel S (2016) Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica. Mater Sci Eng C 68:350–357

    Article  Google Scholar 

  54. Isaac J et al (2011) Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Eur Cell Mater 21:130–143

    Article  Google Scholar 

  55. Shaltooki M, Dini G, Mehdikhani M (2019) Fabrication of chitosan-coated porous polycaprolactone/strontium-substituted bioactive glass nanocomposite scaffold for bone tissue engineering. Mat Sci Eng C 105:110138

    Article  Google Scholar 

  56. Meka SRK, Jain S, Chatterjee K (2016) Strontium eluting nanofibers augment stem cell osteogenesis for bone tissue regeneration. Colloids Surf B Biointerfaces 146:649–656

    Article  Google Scholar 

  57. Khamsehashari N, Hassanzadeh-Tabrizi S, Bigham A (2018) Effects of strontium adding on the drug delivery behavior of silica nanoparticles synthesized by P123-assisted sol–gel method. Mater Chem Phys 205:283–291

    Article  Google Scholar 

  58. Riggs BL, Khosla S, Melton LJ III (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23(3):279–302

    Article  Google Scholar 

  59. Tsai T-T et al (2017) Effects of strontium ranelate on spinal interbody fusion surgery in an osteoporotic rat model. PLoS ONE 12(1):e0167296

    Article  Google Scholar 

  60. Bonnelye E et al (2008) Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42(1):129–138

    Article  Google Scholar 

  61. Ibrahim MRM et al (2016) The effect of strontium ranelate on the healing of a fractured ulna with bone gap in rabbit. BMC Vet Res 12(1):1–9

    Article  Google Scholar 

  62. Zhao K, Feng Q, Chen G (1999) Antibacterial effects of silver loaded hydroxyapatite. Tsinghua Sci Technol 4(3):1570–1573

    Google Scholar 

  63. Narisawa S, Fröhlander N, Millán JL (1997) Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn 208(3):432–446

    Article  Google Scholar 

  64. Watts NB (1999) Clinical utility of biochemical markers of bone remodeling. Clin Chem 45(8):1359–1368

    Article  Google Scholar 

  65. Rajabnejadkeleshteri A et al (2020) Synthesis and characterization of strontium fluor-hydroxyapatite nanoparticles for dental applications. Microchem J 153:104485

    Article  Google Scholar 

  66. Chen Y et al (2017) Antibacterial, osteogenic, and angiogenic activities of SrTiO3 nanotubes embedded with Ag2O nanoparticles. Mater Sci Eng C 75:1049–1058

    Article  Google Scholar 

  67. Gladwin M, Bagby M (2013) Clinical aspects of dental materials: theory, practice, and cases. Wolters Kluwer Health/Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  68. Naaman R, El-Housseiny AA, Alamoudi N (2017) The use of pit and fissure sealants—a literature review. Dent J 5(4):34

    Article  Google Scholar 

  69. García AH et al (2006) Resinas compuestas. Revisión de los materiales e indicaciones clínicas. Med Oral Patol Oral Cir Bucal 11(2):15–20

    Google Scholar 

  70. Melo MA et al (2013) Nanotechnology-based restorative materials for dental caries management. Trends Biotechnol 31(8):459–467

    Article  Google Scholar 

  71. Arastoo S, Behbudi A, Rakhshan V (2019) In vitro microleakage comparison of flowable nanocomposites and conventional materials used in pit and fissure sealant therapy. Front Dent 16(1):21

    Google Scholar 

  72. Priyadarsini S, Mukherjee S, Mishra M (2018) Nanoparticles used in dentistry: a review. J Oral Biol Craniofac Res 8(1):58–67

    Article  Google Scholar 

  73. Priyadarsini S et al (2020) Application of nanoparticles in dentistry: current trends. Nanopart med. Springer, pp 55–98

    Chapter  Google Scholar 

  74. Xia Y et al (2008) Nanoparticle-reinforced resin-based dental composites. J Dent 36(6):450–455

    Article  Google Scholar 

  75. Konar M et al (2019) Antimicrobial activity of nanoparticle-based dental fillers on novel chromogenic bacteria Enterobacter ludwigii. Mater Res Express 6(8):085407

    Article  Google Scholar 

  76. Kulshrestha S et al (2016) Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach. Appl Microbiol Biotechnol 100(4):1901–1914

    Article  Google Scholar 

  77. Hesaraki S, Karimi M, Nezafati N (2020) The synergistic effects of SrF2 nanoparticles, YSZ nanoparticles, and poly-ε-l-lysin on physicomechanical, ion release, and antibacterial-cellular behavior of the flowable dental composites. Mater Sci Eng C 109:110592

    Article  Google Scholar 

  78. Carvalho E et al (2020) Radiopacity and mechanical properties of dental adhesives with strontium hydroxyapatite nanofillers. J Mech Behav Biomed Mater 101:103447

    Article  Google Scholar 

  79. Chillistone S, Hardman JG (2017) Factors affecting drug absorption and distribution. Anaesth Intensive Care Med 18(7):335–339

    Article  Google Scholar 

  80. Vertzoni M et al (2019) Impact of regional differences along the gastrointestinal tract of healthy adults on oral drug absorption: an UNGAP review. Eur J Pharm Sci 134:153–175

    Article  Google Scholar 

  81. Filippousi M et al (2015) Modified chitosan coated mesoporous strontium hydroxyapatite nanorods as drug carriers. J Mater Chem B 3(29):5991–6000

    Article  Google Scholar 

  82. Zhang J et al (2012) Novel mesoporous hydroxyapatite/chitosan composite for bone repair. J Bionic Eng 9(2):243–251

    Article  Google Scholar 

  83. Zhang C et al (2010) Self-activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery. Biomaterials 31(12):3374–3383

    Article  Google Scholar 

  84. Kiani FA et al (2018) Optimization of Ag2O nanostructures with strontium for biological and therapeutic potential. Artif Cells Nanomed Biotechnol 46(sup3):S1083–S1091

    Article  Google Scholar 

  85. Qian W-Y et al (2012) pH-sensitive strontium carbonate nanoparticles as new anticancer vehicles for controlled etoposide release. Int J Nanomed 7:5781

    Google Scholar 

  86. Kasirajan K, Karunakaran M (2019) Synthesis and characterization of strontium cerium mixed oxide nanoparticles using plant extract. Sens Lett 17(12):924–937

    Article  Google Scholar 

  87. Lin Y et al (2008) Synthesis, characterization and antibacterial property of strontium half and totally substituted hydroxyapatite nanoparticles. J Wuhan Univ Technol Mater Sci Ed 23(4):475–479

    Article  Google Scholar 

  88. Rothschild A et al (2006) Electronic structure, defect chemistry, and transport properties of SrTi1−xFexO3−y solid solutions. Chem Mater 18(16):3651–3659

    Article  Google Scholar 

  89. Zhang L et al (2014) Antibacterial activities of mechanochemically synthesized perovskite strontium titanate ferrite metal oxide. Colloids Surf A Physicochem Eng Asp 456:169–175

    Article  Google Scholar 

  90. Apsana G, Devanna N, Yuvasravana R (2018) Biomimetic synthesis and antibacterial properties of strontium oxide nanoparticles using Ocimum sanctum leaf extract. Asian J Pharm Clin Res 11(3):384–389

    Article  Google Scholar 

  91. Mao Z et al (2018) Osteoinductivity and antibacterial properties of strontium ranelate-loaded poly (lactic-co-glycolic acid) microspheres with assembled silver and hydroxyapatite nanoparticles. Front Pharmacol 9:368

    Article  Google Scholar 

  92. Smith DM, Simon JK, Baker JR Jr (2013) Applications of nanotechnology for immunology. Nat Rev Immunol 13(8):592–605

    Article  Google Scholar 

  93. Henriksen-Lacey M et al (2010) Liposomal cationic charge and antigen adsorption are important properties for the efficient deposition of antigen at the injection site and ability of the vaccine to induce a CMI response. J Control Release 145(2):102–108

    Article  Google Scholar 

  94. Akdis CA, Akdis M (2011) Mechanisms of allergen-specific immunotherapy. J Allergy Clin Immunol 127(1):18–27

    Article  Google Scholar 

  95. Malissen B, Tamoutounour S, Henri S (2014) The origins and functions of dendritic cells and macrophages in the skin. Nat Rev Immunol 14(6):417–428

    Article  Google Scholar 

  96. Garbani M et al (2017) Allergen-loaded strontium-doped hydroxyapatite spheres improve allergen-specific immunotherapy in mice. Allergy 72(4):570–578

    Article  Google Scholar 

  97. Shah RB et al (2016) Insulin delivery methods: past, present and future. Int J Pharmaceut Investig 6(1):1

    Article  Google Scholar 

  98. Ahmad A et al (2015) Controlled release of insulin in blood from strontium-substituted carbonate apatite complexes. Curr Drug Deliv 12(2):210–222

    Article  Google Scholar 

  99. Grapengiesser E, Gylfe E, Hellman B (1988) Glucose-induced oscillations of cytoplasmic Ca2+ in the pancreatic β-cell. Biochem Biophys Res Commun 151(3):1299–1304

    Article  Google Scholar 

  100. Hellman B et al (1997) Oscillatory signaling and insulin release in human pancreaticβ-cells exposed to strontium. Endocrinology 138(8):3161–3165

    Article  Google Scholar 

  101. Hellman B et al (1979) The role of calcium in insulin secretion. Hormones Cell Regul 3:69–96

    Google Scholar 

  102. Wollheim CB, Sharp GW (1981) Regulation of insulin release by calcium. Physiol Rev 61(4):914–973

    Article  Google Scholar 

  103. Hellman B et al (1992) Cytoplasmic Ca2+ oscillations in pancreatic beta-cells. Biochem Biophys Acta 1113(3–4):295–305

    Google Scholar 

  104. Hellman B et al (1994) Pulsatile Ca2+ signalling and insulin release. In: Flatt PR, Lenzen S (eds) Frontiers of insulin secretion and pancreatic B-cell research. Smith-Gordon, London, pp 221–228

    Google Scholar 

  105. Priyadarsini S et al (2020) Dietary infection of Enterobacter ludwigii causes fat accumulation and resulted in the diabetes-like condition in Drosophila melanogaster. Microb Pathog 149:104276

    Article  Google Scholar 

  106. Einhorn TA (2005) The science of fracture healing. J Orthop Trauma 19(10):S4–S6

    Article  Google Scholar 

  107. Cao G-L et al (2018) Strontium ranelate combined with insulin is as beneficial as insulin alone in treatment of fracture healing in ovariectomized diabetic rats. Med Sci Monit Int Med J Exp Clin Res 24:6525

    Google Scholar 

  108. Scudeller LA et al (2017) Effects on insulin adsorption due to zinc and strontium substitution in hydroxyapatite. Mat Sci Eng C 79:802–811

    Article  Google Scholar 

  109. Cechinel MAP, de Souza AAU (2014) Study of lead(II) adsorption onto activated carbon originating from cow bone. J Clean Prod 65:342–349

    Article  Google Scholar 

  110. Sereshti H, Farahani MV, Baghdadi M (2016) Trace determination of chromium(VI) in environmental water samples using innovative thermally reduced graphene (TRG) modified SiO2 adsorbent for solid phase extraction and UV–Vis spectrophotometry. Talanta 146:662–669

    Article  Google Scholar 

  111. Li Y-H et al (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14):2787–2792

    Article  Google Scholar 

  112. Ren Y et al (2011) Graphene/δ-MnO2 composite as adsorbent for the removal of nickel ions from wastewater. Chem Eng J 175:1–7

    Article  Google Scholar 

  113. Sereshti H, Amini F, Najarzadekan H (2015) Electrospun polyethylene terephthalate (PET) nanofibers as a new adsorbent for micro-solid phase extraction of chromium(VI) in environmental water samples. RSC Adv 5(108):89195–89203

    Article  Google Scholar 

  114. Kandah MI, Meunier J-L (2007) Removal of nickel ions from water by multi-walled carbon nanotubes. J Hazard Mater 146(1–2):283–288

    Article  Google Scholar 

  115. Esmaeili A, Moore F, Keshavarzi B (2014) Nitrate contamination in irrigation groundwater, Isfahan, Iran. J Environ Earth Sci 72(7):2511–2522

    Article  Google Scholar 

  116. Movassaghi K et al (2006) A preliminary investigation of total organic carbon variation in influent and effluent of Isfahan (Iran) water treatment plant, urban network and Fellman wells. Ann Chim J Anal Env Cult Her Chem 96(7–8):389–398

    Google Scholar 

  117. Stayner LT et al (2017) Atrazine and nitrate in drinking water and the risk of preterm delivery and low birth weight in four Midwestern states. Environ Res 152:294–303

    Article  Google Scholar 

  118. Nodeh HR et al (2017) Enhanced removal of phosphate and nitrate ions from aqueous media using nanosized lanthanum hydrous doped on magnetic graphene nanocomposite. J Environ Manag 197:265–274

    Article  Google Scholar 

  119. Rezaei Kalantary R et al (2016) Nitrate adsorption by synthetic activated carbon magnetic nanoparticles: kinetics, isotherms and thermodynamic studies. Desalin Water Treat 57(35):16445–16455

    Article  Google Scholar 

  120. Nodeh MK et al (2020) Strontium oxide decorated iron oxide activated carbon nanocomposite: a new adsorbent for removal of nitrate from well water. J Braz Chem Soc 31(1):116–125

    Google Scholar 

  121. Annalakshmi M et al (2020) A sensitive and high-performance electrochemical detection of nitrite in water samples based on Sonochemical synthesized Strontium Ferrite Nanochain architectures. Electrochim Acta 360:136797

    Article  Google Scholar 

  122. Ravi R et al (2019) Novel mesoporous trimetallic strontium magnesium ferrite (Sr0.3Mg0.7Fe2O4) nanocubes: a selective and recoverable magnetic nanoadsorbent for Congo red. J Alloys Compd 791:336–347

    Article  Google Scholar 

  123. Idrees N et al (2018) Groundwater contamination with cadmium concentrations in some West UP Regions, India. Saudi J Biol Sci 25(7):1365–1368

    Article  Google Scholar 

  124. Godt J et al (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxico 1(1):1–6

    Google Scholar 

  125. Wang M et al (2010) Preparation of porous nano-barium–strontium titanate and its adsorption behaviour for cadmium ion in water. J Chin Ceram Soc 38(2):305–309

    Google Scholar 

  126. Moussavi G et al (2011) The investigation of mechanism, kinetic and isotherm of ammonia and humic acid co-adsorption onto natural zeolite. Chem Eng J 171(3):1159–1169

    Article  Google Scholar 

  127. Yan T et al (2015) Experimental investigation on the ammonia adsorption and heat transfer characteristics of the packed multi-walled carbon nanotubes. Appl Therm Eng 77:20–29

    Article  Google Scholar 

  128. Kim J et al (2010) Removal of ammonia from wastewater effluent by Chlorella vulgaris. Tsinghua Sci Technol 15(4):391–396

    Article  Google Scholar 

  129. Mochizuki T et al (2016) Adsorption behaviors of ammonia and hydrogen sulfide on activated carbon prepared from petroleum coke by KOH chemical activation. Fuel Process Technol 144:164–169

    Article  Google Scholar 

  130. Du Q et al (2005) Ammonia removal from aqueous solution using natural Chinese clinoptilolite. Sep Purif Technol 44(3):229–234

    Article  Google Scholar 

  131. Le Leuch L, Subrenat A, Le Cloirec P (2005) Hydrogen sulfide and ammonia removal on activated carbon fiber cloth-supported metal oxides. Environ Technol 26(11):1243–1254

    Article  Google Scholar 

  132. Hung C-M, Lou J-C, Lin C-H (2003) Removal of ammonia solutions used in catalytic wet oxidation processes. Chemosphere 52(6):989–995

    Article  Google Scholar 

  133. Saleh TA, Gupta VK (2012) Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J Colloid Interface Sci 371(1):101–106

    Article  Google Scholar 

  134. Saravanan R et al (2016) Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liq 221:1029–1033

    Article  Google Scholar 

  135. Saravanan R et al (2013) Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mat Sci Eng C 33(1):91–98

    Article  Google Scholar 

  136. Ghaedi M et al (2015) Modeling of competitive ultrasonic assisted removal of the dyes–Methylene blue and Safranin-O using Fe3O4 nanoparticles. Chem Eng J 268:28–37

    Article  Google Scholar 

  137. Mousavi SV, Bidhendi GN, Mehrdadi N (2020) Synthesis of graphene oxide decorated with strontium oxide (SrO/GO) as an efficient nanocomposite for removal of hazardous ammonia from wastewater. Sep Purif Technol 55(8):1462–1472

    Google Scholar 

  138. Babaee Y, Mulligan CN, Rahaman MS (2018) Removal of arsenic(III) and arsenic(V) from aqueous solutions through adsorption by Fe/Cu nanoparticles. J Chem Technol Biotechnol 93(1):63–71

    Article  Google Scholar 

  139. Nodeh MKM et al (2018) Efficient removal of arsenic(III) from aqueous media using magnetic polyaniline-doped strontium–titanium nanocomposite. Environ Sci Pollut Res 25(17):16864–16874

    Article  Google Scholar 

  140. Shahabuddin S et al (2016) SrtiO3 nanocube-doped polyaniline nanocomposites with enhanced photocatalytic degradation of methylene blue under visible light. Polymers 8(2):27

    Article  Google Scholar 

  141. van Zyl WE et al (2002) Hybrid polyamide/silica nanocomposites: synthesis and mechanical testing. Macromol Mater Eng 287(2):106–110

    Article  Google Scholar 

  142. Shahabuddin S et al (2016) Synthesis of polyaniline-coated graphene oxide@ SrTiO3 nanocube nanocomposites for enhanced removal of carcinogenic dyes from aqueous solution. Polymers 8(9):305

    Article  Google Scholar 

  143. Rajabalizadeh Z, Seifzadeh D (2016) Strontium phosphate conversion coating as an economical and environmentally-friendly pretreatment for electroless plating on AM60B magnesium alloy. Surf Coat Technol 304:450–458

    Article  Google Scholar 

  144. Nodeh HR, Sereshti H (2016) Synthesis of magnetic graphene oxide doped with strontium titanium trioxide nanoparticles as a nanocomposite for the removal of antibiotics from aqueous media. RSC Adv 6(92):89953–89965

    Article  Google Scholar 

  145. Epstein E (1972) Mineral nutrition of plants: principles and perspectives. Sinaeur, Sunderland

    Google Scholar 

  146. Sanchez PA, Swaminathan MS (2005) Hunger in Africa: the link between unhealthy people and unhealthy soils. Lancet 365(9457):442–444

    Article  Google Scholar 

  147. St. Clair SB, Lynch JP (2010) The opening of Pandora’s Box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 335(1):101–115

    Article  Google Scholar 

  148. Tombuloglu H et al (2019) Impact of calcium and magnesium substituted strontium nano-hexaferrite on mineral uptake, magnetic character, and physiology of barley (Hordeum vulgare L.). Ecotoxicol Environ Saf 186:109751

    Article  Google Scholar 

  149. Li J et al (2013) Physiological effects of magnetic iron oxide nanoparticles towards watermelon. J Nanosci Nanotechnol 13(8):5561–5567

    Article  Google Scholar 

  150. Ren H-X et al (2011) Physiological investigation of magnetic iron oxide nanoparticles towards Chinese mung bean. J Biomed Nanotechnol 7(5):677–684

    Article  Google Scholar 

  151. Pariona N et al (2017) Effect of magnetite nanoparticles on the germination and early growth of Quercus macdougallii. Sci Total Environ 575:869–875

    Article  Google Scholar 

  152. Khot LR et al (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  Google Scholar 

  153. Hajra A, Mondal NK (2017) Effects of ZnO and TiO2 nanoparticles on germination, biochemical and morphoanatomical attributes of Cicer arietinum L. Energy Ecol Environ 2(4):277–288

    Article  Google Scholar 

  154. Khodakovskaya MV et al (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle–plant interactions. Proc Natl Acad Sci 108(3):1028–1033

    Article  Google Scholar 

  155. Morales-Díaz AB et al (2017) Application of nanoelements in plant nutrition and its impact in ecosystems. Adv Nat Sci Nanosci Nanotechnol 8(1):013001

    Article  Google Scholar 

  156. Ali AS, Elozeiri AA (2017) Metabolic processes during seed germination. In: Advances in seed biology, pp 141–166

  157. Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14(2):93–107

    Article  Google Scholar 

  158. Barba-Espin G et al (2012) Role of thioproline on seed germination: interaction ROS-ABA and effects on antioxidative metabolism. Plant Physiol Biochem 59:30–36

    Article  Google Scholar 

  159. Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. CR Biol 331(10):806–814

    Article  Google Scholar 

  160. Gidrol X et al (1994) Accumulation of reactive oxygen species and oxidation of cytokinin in germinating soybean seeds. Eur J Biochem 224(1):21–28

    Article  Google Scholar 

  161. Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates and peroxidase in germinating radish seeds controlled by light, gibberellin and abscisic acid. Plant Physiol 125:1591–1602

    Article  Google Scholar 

  162. Caliskan M, Cuming AC (1998) Spatial specificity of H2O2-generating oxalate oxidase gene expression during wheat embryo germination. Plant J 15(2):165–171

    Article  Google Scholar 

  163. Caro A, Puntarulo S (1999) Nitric oxide generation by soybean embryonic axes. Possible effect on mitochondrial function. Free Rad Res 31(Suppl 1):205–212

    Article  Google Scholar 

  164. Sarath G et al (2007) Reactive oxygen species, ABA and nitric oxide interactions on the germination of warm-season C 4-grasses. Planta 226(3):697–708

    Article  Google Scholar 

  165. El-Maarouf-Bouteau H, Bailly C (2008) Oxidative signaling in seed germination and dormancy. Plant Signal Behav 3(3):175–182

    Article  Google Scholar 

  166. Finkelstein R et al (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    Article  Google Scholar 

  167. Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14(Suppl 1):S15–S45

    Article  Google Scholar 

  168. Wang M, Heimovaara-Dijkstra S, Van Duijn B (1995) Modulation of germination of embryos isolated from dormant and nondormant barley grains by manipulation of endogenous abscisic acid. Planta 195(4):586–592

    Article  Google Scholar 

  169. Wang M et al (1998) Effects of dormancy-breaking chemicals on ABA levels in barley grain embryos. Seed Sci Res 8(2):129–137

    Article  Google Scholar 

  170. Meinhard M, Grill E (2001) Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from Arabidopsis. FEBS Lett 508(3):443–446

    Article  Google Scholar 

  171. Meinhard M, Rodriguez PL, Grill E (2002) The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signalling. Planta 214(5):775–782

    Article  Google Scholar 

  172. Tombuloglu H et al (2019) Impact of calcium and magnesium substituted strontium nano-hexaferrite on mineral uptake, magnetic character, and physiology of barley (Hordeum vulgare L.). Ecotoxicol Environ Saf 186:109751

    Article  Google Scholar 

  173. Rizwan M et al (2019) Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214:269–277

    Article  Google Scholar 

  174. Munir T et al (2018) Effect of zinc oxide nanoparticles on the growth and zn uptake in wheat (Triticum aestivum L.) by seed priming method. Digest J Nanomater Biostruct (DJNB) 13(1):315–323

    Google Scholar 

  175. Tombuloglu H et al (2018) Impact of manganese ferrite (MnFe2O4) nanoparticles on growth and magnetic character of barley (Hordeum vulgare L.). Environ Pollut 243:872–881

    Article  Google Scholar 

  176. Rui M et al (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815

    Article  Google Scholar 

  177. Yang L et al (2018) Response of plant secondary metabolites to environmental factors. Molecules 23(4):762

    Article  Google Scholar 

  178. Uddin M (2019) Environmental factors on secondary metabolism of medicinal plants. Acta Sci Pharm Sci 3(8):34–46

    Google Scholar 

  179. Wójciak-Kosior M et al (2016) The stimulatory effect of strontium ions on phytoestrogens content in Glycine max (L.) Merr. Molecules 21(1):90

    Article  Google Scholar 

  180. Bacciottini L et al (2007) Phytoestrogens: food or drug? Clin Cases Miner Bone Metab 4(2):123

    Google Scholar 

  181. Patisaul HB, Jefferson W (2010) The pros and cons of phytoestrogens. Front Neuroendocrinol 31(4):400–419

    Article  Google Scholar 

  182. Sowa I et al (2014) Biofortification of soy (Glycine max (L.) Merr) with strontium ions. J Agric Food Chem 62(23):5248–5252

    Article  Google Scholar 

  183. Dresler S et al (2018) Effect of long-term strontium exposure on the content of phytoestrogens and allantoin in soybean. Int J Mol Sci 19(12):3864

    Article  Google Scholar 

  184. Deng J et al (2008) Strontium-doped lanthanum cobaltite and manganite: highly active catalysts for toluene complete oxidation. Ind Eng Chem Res 47(21):8175–8183

    Article  Google Scholar 

  185. Mokashi AU et al (2018) Synthesis and characterization of nano strontium ferrite and its gas sensing studies. MS&E 376(1):012055

    Google Scholar 

Download references

Acknowledgements

MM laboratory is thankful to SERB/EMR/2017/003054, BT/PR21857/NNT/28/1238/2017 and Odisha DBT 3325/ST(BIO)-02/2017 for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Mishra.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Mishra, M. Application of strontium-based nanoparticles in medicine and environmental sciences. Nanotechnol. Environ. Eng. 6, 25 (2021). https://doi.org/10.1007/s41204-021-00115-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41204-021-00115-2

Keywords

Navigation