Skip to main content
Log in

Development of Robot-Based Upper Limb Devices for Rehabilitation Purposes: a Systematic Review

  • Original Paper
  • Published:
Augmented Human Research Aims and scope Submit manuscript

Abstract

As the number of patients with impaired nerves is continuously increasing day by day around the globe, rehabilitation training by the physical therapist is more time-consuming and less effective. From last two decades, many robot-based upper limb rehabilitation devices have been developed for physical therapy of the human upper limb by employing state-of-the-art technologies. Hence, there is a need for a comprehensive systematic analysis to understand the basic principle and working of rehabilitation devices. The devices are primarily classified as exoskeleton- and end-effector-oriented robotic devices depending on the alignment of the upper limb joints. The objective of the review is to investigate the functionality developments of the robot-based upper limb rehabilitation devices. In this work, a systematic analysis is being carried out depending on the factors such as compatible designs, control aspects, training modes, actuation methods, and clinical developments of the devices. Furthermore, a tabular comparison is presented for the above factors considering different types of robotic devices and the status of the developments. Finally, the scope of improvement is discussed by minimizing the potential gaps between design and prototyping establishments. This review will help the therapists, researchers, and manufacturers to augment the safety and cost-effective concerns for patients with upper limb impairments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Global Health estimates (2012) Geneva: World Health Organization, 2012. www.who.int/healthinfo/global_burden_disease/en/. Accessed 13 Jan 2019

  2. Lindsay MP, Norrving B, Sacco RL, Brainin M, Hacke W, Martins S, Pandian J, Feigin V (2019) World stroke organization (WSO): global stroke fact sheet. Int J Stroke. https://doi.org/10.1177/1747493019881353

    Article  Google Scholar 

  3. Reid DC (1992) Sports injury assessment and rehabilitation. Churchill Livingstone, New York

    Google Scholar 

  4. Dodson CC, Cordasco FA (2008) Anterior glenohumeral joint dislocations. Orthop Clin North Am 39(4):507–518

    Google Scholar 

  5. Cauraugh JH, Summe JJ (2005) Neural plasticity and bilateral movements: a rehabilitation approach for chronic stroke. Prog Neurobiol 75(5):309–320

    Google Scholar 

  6. Lum PS, Burgar CG, Shor PC, Majmundar M, Van Der ML (2002) Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil 83(7):952–959

    Google Scholar 

  7. Gupta A, O’Malley MK (2006) Design of a haptic arm exoskeleton for training and rehabilitation. IEEE-ASME T Mech. 11(3):280–289

    Google Scholar 

  8. Riener R, Nef T, Colombo G (2005) Robot-aided neurorehabilitation of the upper extremities. Med Biol Eng Comput. 43(1):2–10

    Google Scholar 

  9. Sasaki D, Noritsugu T, Takaiwa M (2006) Development of active support splint driven by pneumatic soft actuator (ASSIST). In: IEEE international conference on robotics and automation (ICRA), pp. 520–525, Barcelona, Spain: IEEE

  10. Gopura RA, Kiguchi K, Li Y (2009) SUEFUL-7: a 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1126–1131, St. Louis (MO), USA

  11. Brewer BR, McDowell SK, Worthen-Chaudhari LC (2007) Poststroke upper extremity rehabilitation: a review of robotic systems and clinical results. Top Stroke Rehabil 14(6):22–44

    Google Scholar 

  12. Norouzi-Gheidari N, Archambault PS, Fung J (2012) Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature. J Rehabil Res Dev 49(4):479

    Google Scholar 

  13. Gopura RA, Bandara DS, Kiguchi K, Mann G (2016) Developments in hardware systems of active upper-limb exoskeleton robots: a review. Robot Auton Syst. 75:203–220

    Google Scholar 

  14. Kapsalyamov A, Hussain S, Jamwal PK (2020) State-of-the-art assistive powered upper limb exoskeletons for elderly. IEEE Access 8:178991–179001

    Google Scholar 

  15. Stewart AM, Pretty CG, Adams M, Chen X (2017) Review of upper limb hybrid exoskeletons. IFAC-PapersOnLine 50(1):15169–15178

    Google Scholar 

  16. Schwarz A, Kanzler CM, Lambercy O, Luft AR, Veerbeek JM (2019) Systematic review on kinematic assessments of upper limb movements after stroke. Stroke 50(3):718–727

    Google Scholar 

  17. Maciejasz P, Eschweiler J, Gerlach-Hahn K, Leondart S, Troy AJ (2014) A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil 11(1):3–32

    Google Scholar 

  18. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151(4):264–269

    Google Scholar 

  19. Medical Dictionary [Internet], Huntingdon Valley (PA): Farlex Inc., http://medicaldictionary.thefreedictionary.com/, (Accessed in: 30.02.2019)

  20. Kiguchi K, Iwami K, Yasuda M, Watanbe K, Fukada T (2003) An exoskeletal robot for human shoulder joint motion assist. IEEE-ASME T Mech 8(1):125–135

    Google Scholar 

  21. Oda K, Isozumi S, Ohyama Y, Timida K, Kikuchi T, Frusho J (2009) Development of isokinetic and iso-contractile exercise machine “MEM-MRB” using MR brake. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan, (2009), pp. 6–11

  22. Stein J, Narendran K, McBean J, Krebs K, Hughes R (2007) Electromyography-controlled exoskeletal upper-limb–powered orthosis for exercise training after stroke. Am J Phys Med Rehabil 86(4):255–261

    Google Scholar 

  23. Kiguchi K, Esaki R, Tsuruta T, Watanabe K, Fukuda T (2003) An exoskeleton system for elbow joint motion rehabilitation. In: IEEE/ASME international conference on advanced intelligent mechatronics (AIM), Kobe, Japan, (2003), pp. 1228–1233

  24. Hosseini M, Meattini R, Palli G, Melchiorri C (2017) A wearable robotic device based on twisted string actuation for rehabilitation and assistive applications. J Robotics 2017:1–12

    Google Scholar 

  25. Pylatiuk C, Kargov A, Gaiser I, Werner T, Schulz S, Bretthauer G (2009) Design of a flexible fluidic actuation system for a hybrid elbow orthosis. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan, (2009), pp. 167–171

  26. Jarrett C, McDaid AJ (2017) Robust control of a cable-driven soft exoskeleton joint for intrinsic human-robot interaction. IEEE Trans Neural Syst Rehabil Eng 25(7):976–986

    Google Scholar 

  27. Beigzadeh B, Ilami M, Najafian S (2016) Design and development of one degree of freedom upper limb exoskeleton. In: 3rd RSI international conference on robotics and mechatronics (ICROM), Tehran, Iran, (2016), pp. 223–228

  28. Cheng HS, Ju MS, Lin CC (2003) Improving elbow torque output of stroke patients with assistive torque controlled by EMG signals. J Biomech Eng 125(6):881–886

    Google Scholar 

  29. Mavroidis C, Nikitczuk J, Weinberg B, Danaher G, Jensen K, Pelletier P, Prugnarola J, Stuart R, Arango R, Leahey M, Pavone R, Provo A, Yasevac D (2005) Smart portable rehabilitation devices. J Neuroeng Rehabil 2(1):18

    Google Scholar 

  30. Vanderniepen I, Ham RV, Damme MV, Versulys R, Lefber D (2009) Orthopaedic rehabilitation: a powered elbow orthosis using compliant actuation. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan, (2009) pp. 172–177

  31. Triwiyanto T, Wahyunggoro O, Nugroho HA, Herianto H (2001) Evaluating the performance of Kalman filter on elbow joint angle prediction based on electromyography. Int J Prec Eng Manuf. 18(12):1739–1748

    Google Scholar 

  32. Sulzer JS, Peshkin MA, Patton JL Design of a mobile, inexpensive device for upper extremity rehabilitation at home. IEEE 10th international conference on rehabilitation robotics, Noordwijk, The Netherlands, (2007), pp. 933–937

  33. Kung C, Ju MS, Lin CC (2008) Design of a forearm rehabilitation robot. IEEE international conference on rehabilitation robotics (ICORR). Noordwijk, Netherlands, pp 228–233

    Google Scholar 

  34. Freeman CT, Hughes AM, Burridge JH, Chappell PH, Lewin PL, Rogers Eric (2009) A robotic workstation for stroke rehabilitation of the upper extremity using FES. Med Eng Phys 31(3):364–373

    Google Scholar 

  35. Chang JJ, Tung WL, Huang MH, Su FC (2007) Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke. Arch Phys Med Rehabil 88(10):1332–1338

    Google Scholar 

  36. Song R, Tong KY, Hu XL, Zheng XJ (2008) Myoelectrically controlled robotic system that provide voluntary mechanical help for persons after stroke. In: IEEE International conference on rehabilitation robotics (ICORR), Noordwijk, Netherlands, (2008), pp. 246–249

  37. Loureiro RC, Belda-Lois JM, Lima ER, Pons JL, Sanchez-Lacuesta JJ, Harwin SW (2005) Upper limb tremor suppression in ADL via an orthosis incorporating a controllable double viscous beam actuator. In: IEEE international conference on rehabilitation robotics (ICORR), Chicago (IL), USA, (2005), pp. 119–122

  38. Colombo R, Pisano F, Mazzone A, Carmen D, Micera S, Chiara M, Dario P, Minuco G (2007) Design strategies to improve patient motivation during robot-aided rehabilitation. J Neuroeng Rehabil. 4(1):3

    Google Scholar 

  39. Hu XL, Tong KY, Song R, Zheng XJ, Lui KH, Leung WWF, Ng S, Yeung AUY (2009) Quantitative evaluation of motor functional recovery process in chronic stroke patients during robot-assisted wrist training. J Electromyogr Kinesiol 19(4):639–650

    Google Scholar 

  40. Bionic Laboratories, Toronto, Canada: Bionic Laboratories Corp., http://www.bioniklabs.com, (Accessed in: 18.11.2019)

  41. Khanicheh A, Mintzopoulos D, Weinberg B, Tzika AA, Mavroidis C (2008) Magnetic resonance compatible smart hand rehabilitation device for brain imaging. IEEE Trans Neural Syst Rehabil Eng 6(1):91–98

    Google Scholar 

  42. Nathan DE, MJ Johnson and McGuire J (2009) Feasibility of integrating FES grasp assistance with a task-oriented robot-assisted therapy environment: a case study. In: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics, Scottsdale (AZ), USA, (2009), pp. 807–812

  43. Tyromotion gmbh, Graz, AUSTRIA: Tyromotion GmbH. https://tyromotion.com/en/, (Accessed in: 18.11.2019)

  44. Ho NS, Tong KY, Hu XL, Hu XL, Fung KL, Wei XJ, Rong W, Susanto EA (2011) An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation. In: IEEE international conference on rehabilitation robotics (ICORR), Zurich, Switzerland, (2011), pp. 1–5

  45. Winter SH, Bouzit M (2007) Use of magnetorheological fluid in a force feedback glove. IEEE Trans Neural Syst Rehabil Eng 15(1):2–8

    Google Scholar 

  46. Kline T, Kamper D, Schmit B Control system for pneumatically controlled glove to assist in grasp activities. In: IEEE international conference on rehabilitation robotics (ICORR), Chicago (IL), USA, (2005), pp.78-81

  47. Lucas L, Dicicco M, Matsuoka Y (2004) An EMG-controlled hand exoskeleton for natural pinching. J Robot Mechatron 16(5):482–488

    Google Scholar 

  48. Worsnopp TT, Peshkin MA, Colgate JE, Kamper DG (2007) An actuated finger exoskeleton for hand rehabilitation following stroke. In: IEEE international conference on rehabilitation robotics (ICORR), Noordwijk, Netherlands, (2007), pp. 896-901

  49. Broadened Horizons, Wilmington (DE): Broadened Horizons Inc., http://www.BroadenedHorizons.com, (accessed in: 18.02.2019)

  50. Hesse S, Kuhlmann H, Wilk J, Tomelleri C, Kirker S (2008) A new electromechanical trainer for sensorimotor rehabilitation of paralysed fingers: a case series in chronic and acute stroke patients. J Neuroeng Rehabil. 5(1):21

    Google Scholar 

  51. Bower C, Taheri H, Wolbrecht E (2013) Adaptive control with state-dependent modeling of patient impairment for robotic movement therapy. In: IEEE international conference on rehabilitation robotics (ICORR), Seattle (WA), USA, (2013), pp. 1–6

  52. Bouzit M, Burdea G, Popescu G, Boian R (2002) The Rutgers master II-new design force-feedback glove. IEEE/ASME Trans Mechatron 7:256–263

    Google Scholar 

  53. Schabowsky CN, Godfrey SB, Holley RJ, Lum PS (2010) Development and pilot testing of HEXORR: hand EXOskeleton rehabilitation robot. J Neuroeng Rehabil. 7(1):36

    Google Scholar 

  54. Mulas M, Folgheraiter M, Gini G (2005) An EMG-controlled exoskeleton for hand rehabilitation. In: IEEE international conference on rehabilitation robotics (ICORR), Chicago (IL), USA, (2005), pp. 371–374

  55. Xing K, Xu Q, He J, Wang Y, Liu Z, Huang X (2009) A wearable device for repetitive hand therapy. In: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), Scottsdale (AZ), USA, (2009), pp. 919–923

  56. Sarakoglou I, Tsagarakis NG, Caldwell DG Occupational and physical therapy using a hand exoskeleton based exerciser. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), Sendai, Japan, (2010), pp. 2973–2978

  57. Ferguson PW, Dimapasoc B, Shen Y, Rosen J (2018) Design of a hand exoskeleton for use with upper limb exoskeletons. In: international symposium on wearable robotics, (2018), pp. 276–280

  58. Rotella MF, Reuther KE, Hofmann CL, Hage EB, Busha BF (2009) An orthotic hand-assistive exoskeleton for actuated pinch and grasp. In: IEEE 35th annual northeast bioengineering conference, Boston (MA), USA, (2009), pp. 1–2

  59. Mali U, Munih M (2006) HIFE-haptic interface for finger exercise. IEEE-ASME Trans Mech. 11(1):93–102

    Google Scholar 

  60. Wege A, Hommel G (2005) Development and control of a hand exoskeleton for rehabilitation of hand injuries. In: IEEE/RSJ International conference on intelligent robots and systems (IROS), Edmonton, Alta., Canada, (2005), pp. 3046–3051

  61. Gloreha: Hand rehabilitation, Lumezzane (BS), Italy: Gloreha,” https://www.gloreha.com/, (accessed in 12.04.2019)

  62. Dovat L, Lambercy O, Gassert R, Maeder T, Milner T, Leong TC, Burdet E (2008) HandCARE: a cable-actuated rehabilitation system to train hand function after stroke. IEEE Trans Neural Syst Rehabil Eng 16(6):582–591

    Google Scholar 

  63. Chen M, Ho SK, Zhou HF, Pang PMK, Hu XL, Ng DTW, Tong KY (2009) Interactive rehabilitation robot for hand function training. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan, pp. 777–780

  64. Tong KY, Ho SK, Pang PM, Hu XL, Tam WK, Fung KL, Wei XJ, Chen PN, Chen M (2010) An intention driven hand functions task training robotic system. In: Annual international conference of the IEEE engineering in medicine and biology society (EMBC), Buenos Aires, Argentina, (2010), pp. 3406–3409

  65. Fleischer C, Kondak K, Wege A, Kossyk I (2009) Research on exoskeletons at the TU Berlin. In: Advances in robotics research, pp. 335–346

  66. Rosen J, Brand M, Fuchs MB, Arcan M (2001) A myosignal-based powered exoskeleton system. IEEE Trans Syst Man Cybern A Syst Hum. 31(3):210–222

    Google Scholar 

  67. Kiguchi K, Rahman MH, Sasaki M, Teramoto K (2008) Development of a 3DOF mobile exoskeleton robot for human upper-limb motion assist. Robot Auton Syst. 56(8):678–691

    Google Scholar 

  68. Mahdavian M, Toudeshki AG, Koma Y (2016) A Design and fabrication of a 3DoF upper limb exoskeleton. In: 3rd RSI international conference on robotics and mechatronics (ICROM), Tehran, Iran, (2016), pp. 342–346

  69. Klein J, Spencer S, Allington J, Bobrow JE, David J (2010) Optimization of a parallel shoulder mechanism to achieve a high-force, low-mass, robotic-arm exoskeleton. IEEE Trans Robot 26(4):710–715

    Google Scholar 

  70. Stienen AH, Hekman EE, Prange GB, Jannink MJA, Aalsma AMM, Helm FCT, Kooij VD (2009) Dampace: Design of an exoskeleton for force-coordination training in upper-extremity rehabilitation. J Med Device 3(3):031003

    Google Scholar 

  71. Stienen AH, Hekman EE, Schouten AC, van der Helm FC, van der Kooij H (2009) Suitability of hydraulic disk brakes for passive actuation of upper-extremity rehabilitation exoskeleton. Appl Bionics Biomech 6(2):103–114

    Google Scholar 

  72. Nef T, Mihelj M, Kiefer G, Perndl C, Muller R, Riener R (2008) ARMin-Exoskeleton for arm therapy in stroke patients. In: IEEE international conference on rehabilitation robotics (ICORR), Noordwijk, Netherlands, pp. 68–74

  73. Garrec P, Friconneau JP, Measson Y, Perrot Y (2008) ABLE, an innovative transparent exoskeleton for the upper-limb. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), Nice, France (2008) pp. 1483–1488

  74. Pirondini E, Coscia M, Marcheschi S, Roas G, Salsedo F, Frisoli A, Bergamasco M, Micera S (2014) Evaluation of a new exoskeleton for upper limb post-stroke neuro-rehabilitation: preliminary results. In: Replace, repair, restore, relieve–bridging clinical and engineering solutions in neurorehabilitation, Springer, Cham, pp. 637–645

  75. Stroppa F, Loconsole C, Marcheschi S, Frisoli A (2017) A robot-assisted neuro-rehabilitation system for post-stroke patients’ motor skill evaluation with ALEx exoskeleton. Converging clinical and engineering research on neurorehabilitation II. Springer, Cham, pp 501–505

    Google Scholar 

  76. Crea S, Cempini M, Moisè M, Baldoni A, Trigili E, Marconi D, Cortese M, Giovacchini F, Posteraro F, Vitiello N (2016) A novel shoulder-elbow exoskeleton with series elastic actuators. In: 6th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), Singapore, Singapore, (2016), pp. 1248–1253

  77. Accogli A, Grazi L, Crea S, Panarese A, Carpaneto J, Vitiello N, Micera S (2017) EMG-based detection of user’s intentions for human-machine shared control of an assistive upper-limb exoskeleton. Wearable robotics: challenges and trends. Springer, Cham, pp 181–185

    Google Scholar 

  78. Kobayashi H, Nozaki H (2007) Development of muscle suit for supporting manual worker. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), San Diego (CA), USA (2007) pp. 1769–1774

  79. Sutapun A, Sangveraphunsiri V (2017) Novel design and implementation of a 4-DOF upper limb exoskeleton for stroke rehabilitation with active assistive control strategy. Engg J. 21(7):275–291

    Google Scholar 

  80. Brackbill EA, Mao Y, Agrawal SK, Annapragada M, Dubey VN (2009) Dynamics and control of a 4-dof wearable cable-driven upper arm exoskeleton. In: IEEE international conference on robotics and automation (ICRA), Kobe, Japan (2009) pp. 2300–2305

  81. Zhou L, Bai S, Andersen MS, Rasmussen J (2015) Modeling and design of a spring-loaded, cable-driven, wearable exoskeleton for the upper extremity. Model Identif Control. 36(3):167–177

    Google Scholar 

  82. Micera S, Carrozza MC, Guglielmelli E, Cappiello G, Zaccone F, Freschi C, Colombo R, Mazzone A, Delconte C, Pisano F, Minuco G (2005) A simple robotic system for neurorehabilitation. Auton Robots 19(3):271–284

    Google Scholar 

  83. Ju MS, Lin CC, Lin DH, Hwang IS, Chen SM (2005) A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot. IEEE Trans Neural Syst Rehabil Eng 13(3):349–358

    Google Scholar 

  84. Rosati G, Gallina P, Masiero S (2007) Design, implementation and clinical tests of a wire-based robot for neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(4):560–569

    Google Scholar 

  85. Sivan M, Gallagher J, Makower S, Keeling D, Bhakta B, O’Connor RJ, Levesley M (2014) Home-based computer assisted arm rehabilitation (hCAAR) robotic device for upper limb exercise after stroke: results of a feasibility study in home setting. J Neuroeng Rehabil 11(1):163

    Google Scholar 

  86. M. Sivan (2014) Development of a home-based computer assisted arm rehabilitation (hCAAR) device for upper limb exercises in stroke patients. MD Thesis, LIRMM, University of Leeds

  87. M. D. Ellis, T. Sukal, T. DeMott and J. P. Dewald (2008) ACT3D exercise targets gravity-induced discoordination and improves reaching work area in individuals with stroke. In: IEEE international conference on rehabilitation robotics (ICORR), Noordwijk, Netherlands, pp. 890–895

  88. Reinkensmeyer DJ, Kahn LE, Averbuch M, McKenna-Cole A, Schmit BD, Rymer WZ (2000) Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide. J Rehabil Res Dev 37(6):653–662

    Google Scholar 

  89. Schoone M, Van Os P, Campagne A, Robot-mediated active rehabilitation (ACRE) a user trial. In: IEEE international conference on rehabilitation robotics (ICORR), Noordwijk, Netherlands (2008) pp. 477–481

  90. Rosati G, Gallina P, Masiero S, Rossi A (2005) Design of a new 5 dof wire-based robot for rehabilitation. In: IEEE international conference on rehabilitation robotics (ICORR), Chicago (IL), USA (2005) pp. 430–433

  91. Burgar CG, Lum PS, Shor PC, Van der Loos HM (2000) Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J Rehabil Res Dev 37(6):663–674

    Google Scholar 

  92. Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C (2003) Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil 84(6):915–920

    Google Scholar 

  93. Allington J, Spencer SJ, Klein J, Buell M, Reinkensmeyer DJ, Bobrow J (2011) Supinator extender (SUE): a pneumatically actuated robot for forearm/wrist rehabilitation after stroke. In: Annual international conference of the IEEE engineering in medicine and biology society (EMBC), Boston (MA), USA (2011) pp. 1579-1582

  94. Spencer SJ, Klein J, Minakata K, Le V, Bobrow JE, Reinkensmeyer DJ (2009) A low cost parallel robot and trajectory optimization method for wrist and forearm rehabilitation using the Wii. In: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), Scottsdale (AZ), USA (2009) pp. 869–874

  95. Gopura RA, Kiguchi K (2009) A human forearm and wrist motion assist exoskeleton robot with EMG-based fuzzy-neuro control. In: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), Scottsdale (AZ), USA (2009) pp. 550–555

  96. Gupta A, O’Malley MK, Patoglu V, Burgar C (2008) Design, control and performance of RiceWrist: a force feedback wrist exoskeleton for rehabilitation and training. Int J Rob Res 27(2):233–251

    Google Scholar 

  97. Krebs HL, Volpe BT, Williams D, Celestino J, Charles SK, Lynch D, Hogan N (2007) Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15(3):327–335

    Google Scholar 

  98. Cordo P, Lutsep H, Cordo L, Wright WG, Cacciatore T, Skoss R (2009) Assisted movement with enhanced sensation (AMES): coupling motor and sensory to remediate motor deficits in chronic stroke patients. Neurorehabil Neural Repair. 23(1):67–77

    Google Scholar 

  99. Koeneman EJ, Schultz RS, Wolf SL, Herring DE, Koeneman JB (2004) A pneumatic muscle hand therapy device. In: 26th Annual international conference of the IEEE engineering in medicine and biology society (IEMBS), San Francisco (CA) USA (2004) pp. 2711–2713

  100. Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC (2007) Robot-based hand motor therapy after stroke. Brain 131(2):425–437

    Google Scholar 

  101. K. Kiguchi, Y. Kose and Y. Hayashi (2010) An upper-limb power-assist exoskeleton robot with task-oriented perception-assist. In: 3rd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), Tokyo, Japan, pp. 88–93

  102. Li Z, Huang Z, He W, Su CY (2017) Adaptive impedance control for an upper limb robotic exoskeleton using biological signals. IEEE Trans. Ind. Electron. 64(2):1664–1674

    Google Scholar 

  103. Vertechy R, Frisoli A, Dettori A, Solazzi M, Bergamasco M (2009) Development of a new exoskeleton for upper limb rehabilitation.In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan (2009) pp. 188–193

  104. Frisoli A, Borelli L, Montagner A, Marcheschi S, Procopio C, Salsedo F, Bergamasco M, Carboncini MC, Tolaini M, Rossi B (2008) Arm rehabilitation with a robotic exoskeleton in virtual reality. In: IEEE international conference on rehabilitation robotics (ICORR), Noordwijk, Netherlands (2008) pp. 631–642

  105. Carignan C, Tang J, Roderick S, Naylor M (2008) A configuration-space approach to controlling a rehabilitation arm exoskeleton. In: IEEE international conference on rehabilitation robotics (ICORR), Noordwijk, Netherlands (2008) pp. 179–187

  106. Johnson GR, Carus DA, Parrini G, Marchese S, Valeggi R (2001) The design of a five-degree-of-freedom powered orthosis for the upper limb. Proc Inst Mech Eng H. 215(3):275–284

    Google Scholar 

  107. Rahman MH, Kittel-Ouimet T, Saad M, Kenné JP, Archambault PS (2012) Development and control of a robotic exoskeleton for shoulder, elbow and forearm movement assistance. Appl Bionics Biomech. 9(3):275–292

    Google Scholar 

  108. John MS, Thomas N, Sivakumar VP (2016) Design and development of cable driven upper limb exoskeleton for arm rehabilitation. Int J Sci Eng Res. 7(3):1432–1440

    Google Scholar 

  109. Pignolo L, Dolce G, Basta G, Lucca LF, Serra S, Sannita WG (2012) Upper limb rehabilitation after stroke: ARAMIS a “robo-mechatronic” innovative approach and prototype. In: 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), Rome, Italy (2012) pp. 1410–1414

  110. Amirabdollahian F, Loureiro R, Gradwell E, Collin C, Harwin W, Johnson G (2007) Multivariate analysis of the Fugl-Meyer outcome measures assessing the effectiveness of GENTLE/S robot-mediated stroke therapy. J Neuroeng Rehabil. 4(1):4

    Google Scholar 

  111. Fluet GG, Qiu Q, Saleh S, Ramirez D, Adamovich S, Kelly D, Parikh H (2009) Robot-assisted virtual rehabilitation (NJIT-RAVR) system for children with upper extremity hemiplegia. In: Virtual rehabilitation international conference; Haifa, Israel (2009) pp. 189–192

  112. Rocon E, Belda-Lois JM, Ruiz AF, Manto M, Moreno JC, Pons JL (2007) Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Trans Neural Syst Rehabil Eng 3(15):367–378

    Google Scholar 

  113. Ding M, Ueda J, Ogasawara T (2009) Pinpointed muscle force control using a power-assisting device: system configuration and experiment. In: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), Scottsdale (AZ), USA (2009) pp. 181–186

  114. Fitle KD, Pehlivan AU, O’Malley MK (2015) A robotic exoskeleton for rehabilitation and assessment of the upper limb following incomplete spinal cord injury. In: IEEE international conference on robotics and automation (ICRA), Seattle (WA), USA (2015) pp. 4960–4966

  115. Bhagat NA, Venkatakrishnan A, Abibullaev B, Artz EJ, Yozbatiran N, Blank AA, French J, Karmonik C, Grossman RG, O’Malley MK, Francisco GE (2016) Design and optimization of an EEG-based brain machine interface (BMI) to an upper-limb exoskeleton for stroke survivors. Front Neurosci. 10:122

    Google Scholar 

  116. Gunasekara M, Gopura R, Jayawardena S (2015) 6-REXOS: Upper limb exoskeleton robot with improved pHRI. Int J Adv Robot Syst. 12(4):47

    Google Scholar 

  117. Scherer R, Pradhan R, Dellon B, Kim D, Klatzky R, Matsuoka Y (2009) Characterization of multi-finger twist motion toward robotic rehabilitation. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan (2009) pp. 812–817

  118. Lambercy O, Dovat L, Gassert R, Burdet E, Teo CL, Milner T (2007) A haptic knob for rehabilitation of hand function. IEEE Trans Neural Syst Rehabil Eng 15(3):356–366

    Google Scholar 

  119. Hasegawa Y, Mikami Y, Watanabe K, Sankai Y (2008) Five-fingered assistive hand with mechanical compliance of human finger. In: IEEE international conference on robotics and automation (ICRA), Pasadena (CA), USA (2008) pp. 718–724

  120. Kawasaki H, Ito S, Ishigure Y, Nishimoto Y, Aoki T, Mouri T, Sakaeda H, Abe M (2008) Development of a hand motion assist robot for rehabilitation therapy by patient self-motion control. In: IEEE international conference on rehabilitation robotics (ICORR), Noordwijk, Netherlands (2008) pp. 234–240

  121. Casadio M, Sanguineti V, Morasso PG, Arrichiello V (2006) Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation. Technol Health Care 14(3):123–142

    Google Scholar 

  122. Kikuchi T, Ozawa T, Akai H, Furusho J (2009) “Hybrid-PLEMO”, rehabilitation system for upper limbs with active/passive force feedback, and its application for facilitation techniques. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan, pp. 781–786

  123. Rosati G, Zanotto D, Secoli R, Rossi A (2009) Design and control of two planar cable-driven robots for upper-limb neurorehabilitation. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan (2009) pp. 560–565

  124. Takahashi Y, Terada T, Inoue K, Ito Y, Ikeda Y, Lee H, Komeda T (2008) Haptic device system for upper limb motor and cognitive function rehabilitation: Grip movement comparison between normal subjects and stroke patients. In: IEEE international conference on rehabilitation robotics (ICORR), Noordwijk, Netherlands (2008) pp. 736–741

  125. Tanaka Y, Ishii M, Tsuji T, Imamura N (2008) Modeling and evaluation of human motor skills in a virtual tennis task. In: 30th Annual international conference of the IEEE engineering in medicine and biology society (EMBS), Vancouver (BC), Canada (2008) pp. 4190–4193

  126. Xiu-Feng Z, Lin-Hong J, Li-Yun G (2006) A novel robot neurorehabilitation for upper limb motion. In: 27th Annual conference of the IEEE engineering in medicine and biology (EMBS), Shanghai, China,pp. 5040–5043

  127. Sugar TG, He J, Koeneman EJ, Koeneman JB, Herman R, Huang H, Schultz RS, Herring DE, Wanberg J, Balasubramanian S, Swenson P (2007) Design and control of RUPERT: a device for robotic upper extremity repetitive therapy. IEEE Trans Neural Syst Rehabil Eng 15(3):336–346

    Google Scholar 

  128. Balasubramanian S, Wei R, Perez M, Shepard B, Koeneman E, Koeneman J, He J (2008) RUPERT: an exoskeleton robot for assisting rehabilitation of arm functions. In: Virtual rehabilitation, Vancouver (BC), Canada, pp. 163–167

  129. Kang HB, Wang JH (2015) Adaptive robust control of 5 DOF upper-limb exoskeleton robot. Int J Control Autom Syst 13(3):733–741

    Google Scholar 

  130. Nef T, Guidali M, Riener R (2009) ARMin III–arm therapy exoskeleton with an ergonomic shoulder actuation. Appl Bionics Biomech 6(2):127–142

    Google Scholar 

  131. Guidali M, Duschau-Wicke A, Broggi S, Klamroth-Marganska V, Nef T, Riener R (2011) A robotic system to train activities of daily living in a virtual environment. Med Biol Eng Comput 49(10):1213–1223

    Google Scholar 

  132. Perry JC, Rosen J, Burns S (2007) Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatronics 12(4):408–417

    Google Scholar 

  133. Tsagarakis NG, Caldwell DG (2003) Development and control of a ‘soft-actuated’ exoskeleton for use in physiotherapy and training. Auton Robot 15(1):21–33

    Google Scholar 

  134. Rahman MH, Ouimet TK, Saad M, Kenne JP, Archambault PS (2010) Development and control of a wearable robot for rehabilitation of elbow and shoulder joint movements. In: IECON 2010-36th Annual conference on IEEE industrial electronics society, Glendale (AZ), USA (2010) pp. 1506–1511

  135. Rahman MH, Saad M, Kenné JP, Archambault PS (2013) Control of an exoskeleton robot arm with sliding mode exponential reaching law. Int J Control Autom Syst 11(1):92–104

    Google Scholar 

  136. Cui X, Chen W, Jin X, Agrawal SK (2017) Design of a 7-DOF cable-driven arm exoskeleton (CAREX-7) and a controller for dexterous motion training or assistance. IEEE/ASME Trans Mechatron 22(1):161–172

    Google Scholar 

  137. Garrido J, Yu W, Li X (2016) Modular design and control of an upper limb exoskeleton. J Mech Sci Technol 30(5):2265–2271

    Google Scholar 

  138. Kim H, Kim J (2017) Control of the seven-degree-of-freedom upper limb exoskeleton for an improved human-robot interface. J Korean Phys Soc. 70(7):726–734

    Google Scholar 

  139. Umemura A, Saito Y, Fujisaki K (2009) A study on power-assisted rehabilitation robot arms operated by patient with upper limb disabilities. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan, pp. 451–456

  140. Liu L, Shi YY, Xie L (2016) A novel multi-dof exoskeleton robot for upper limb rehabilitation. J Mech Med Biol 16(08):1640023

    Google Scholar 

  141. Schiele A, Van Der Helm FC (2006) Kinematic design to improve ergonomics in human machine interaction. IEEE Trans Neural Syst Rehabil Eng 14(4):456–469

    Google Scholar 

  142. Furusho J, Koyanagi KI, Imada Y, Fujii Y, Nakanishi K, Domen K, Miyakoshi K, Ryu U, Takenaka S, Inoue A (2005) A 3-D rehabilitation system for upper limbs developed in a 5-year NEDO project and its clinical testing. In: IEEE international conference on rehabilitation robotics (ICORR), Chicago (IL), USA (2005), pp. 53–56

  143. Denève A, Moughamir S, Afilal L, Zaytoon J (2008) Control system design of a 3-DOF upper limbs rehabilitation robot. Comput Methods Programs Biomed 89(2):202–214

    Google Scholar 

  144. Furuhashi Y, Nagasaki M, Aoki T, Morita Y, Ukai H, Matsui N (2009) Development of rehabilitation support robot for personalized rehabilitation of upper limbs. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan, (2009) pp. 787–792

  145. Adamovich SV, Fluet GG, Merians AS, Mathai A, Qiu Q (2009) Incorporating haptic effects into three-dimensional virtual environments to train the hemiparetic upper extremity. IEEE Trans Neural Syst Rehabil Eng 17(5):512–520

    Google Scholar 

  146. Beer RF, Naujokas C, Bachrach B, Mayhew D (2009) Development and evaluation of a gravity compensated training environment for robotic rehabilitation of post-stroke reaching. In: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), Scottsdale (AZ), USA, (2009), pp. 205–210

  147. Furusho J, Kikuchi T, Oda K, Ohyama Y, Morita T, Shichi N, Jin Y, Inoue A (2007) A 6-dof rehabilitation support system for upper limbs including wrists “robotherapist” with physical therapy. In: 2007 IEEE 10th international conference on rehabilitation robotics, Noordwijk, Netherlands, (2007), pp. 304–309

  148. Tsai BC, Wang WW, Hsu LC, Fu LC, Lai JS (2010) An articulated rehabilitation robot for upper limb physiotherapy and training. In: 2010 IEEE/RSJ international conference on intelligent robots and systems, Taipei, Taiwan, (2010), pp. 1470–1475

  149. Kim YS, Lee J, Lee S, Kim M (2005) A force reflected exoskeleton-type masterarm for human-robot interaction. IEEE Trans Syst Man Cybern A Syst Hum 35(2):198–212

    Google Scholar 

  150. “Hocoma, Hocoma (AG), Switzerland: Hocoma AG corporation,” https://www.hocoma.com/, (accessed in 12.04.2019)

  151. Mayr A, Kofler M, Saltuari L (2008) ARMOR: an electromechanical robot for upper limb training following stroke. A prospective randomised controlled pilot study. Handchir Mikrochir Plast Chir 40(1):66–73

    Google Scholar 

  152. Loureiro RC, Harwin WS (2007) Reach & grasp therapy: design and control of a 9-DOF robotic neuro-rehabilitation system. In: IEEE international conference on rehabilitation robotics (ICORR), Noordwijk, Netherlands, (2007), pp. 757–763

  153. Ren Y, Park HS, Zhang LQ (2009) Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan, (2009), pp. 761–765

  154. Motorika, Mount Laurel (NJ): Motorika USA Inc.,” http://motorika.com/, (Accessed in 12.04.2019)

  155. Wolbrecht ET, Leavitt J, Reinkensmeyer DJ, Bobrow JE (2006) Control of a pneumatic orthosis for upper extremity stroke rehabilitation. In: 2006 International conference of the IEEE engineering in medicine and biology society, New York (NY), USA, (2006), pp. 2687–2693

  156. Sanchez R, Reinkensmeyer DE, Shah P, Liu J, Rao S, Smith R, Cramer S, Rahman T, Bobrow J (2004) Monitoring functional arm movement for home-based therapy after stroke. In: 26th Annual international conference of the IEEE engineering in medicine and biology society (IEMBS), San Francisco (CA), USA, pp. 4787–4790

  157. Otten A, Voort C, Stienen A, Aarts R, van Asseldonk E, van der Kooij H (2015) LIMPACT: a hydraulically powered self-aligning upper limb exoskeleton. IEEE ASME Trans Mechatron 20(5):2285–2298

    Google Scholar 

  158. Mushage BO, Chedjou JC, Kyamakya K (2017) Fuzzy neural network and observer-based fault-tolerant adaptive nonlinear control of uncertain 5-DOF upper-limb exoskeleton robot for passive rehabilitation. Nonlinear Dyn 87(3):2021–2037

    MATH  Google Scholar 

  159. Toth A, Fazekas G, Arz G, Jurak M, Horvath M (2005) Passive robotic movement therapy of the spastic hemiparetic arm with REHAROB: report of the first clinical test and the follow-up system improvement. In: IEEE international conference on rehabilitation robotics (ICORR), Chicago (IL), USA, (2005), pp. 127–130

  160. Morales R, Badesa FJ, García-Aracil N, Sabater JM, Pérez-Vidal C (2011) Pneumatic robotic systems for upper limb rehabilitation. Med Biol Eng Comput. 49(10):1145–1156

    Google Scholar 

  161. Culmer PR, Jackson AE, Makower SG, Cozens JA, Levesley MC, Mon-Williams M, Bhakta B (2011) A novel robotic system for quantifying arm kinematics and kinetics: description and evaluation in therapist-assisted passive arm movements post-stroke. J Neurosci Methods 197(2):259–269

    Google Scholar 

  162. Krebs HI, Hogan N, Aisen ML, Volpe BT (1998) Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng. 6(1):75–87

    Google Scholar 

  163. Fasoli SE, Krebs HI, Stein J, Frontera WR, Hogan N (2003) Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch Phys Med Rehabil 84(4):477–482

    Google Scholar 

  164. Pedrocchi A, Ferrante S, Ambrosini E, Gandolla M, Casellato C, Schauer T, Klauer C, Pascual J, Vidaurre C, Gföhler M, Reichenfelser W (2013) MUNDUS project: MUltimodal Neuroprosthesis for daily Upper limb Support. J Neuroeng Rehabil. 10(1):66

    Google Scholar 

  165. Oblak J, Cikajlo I, Matjacic Z (2009) A universal haptic device for arm and wrist rehabilitation. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto, Japan, (2009). pp. 436–441

  166. Marchal-Crespo L, Reinkensmeyer DJ (2009) Review of control strategies for robotic movement training after neurologic injury. J Neuroeng Rehabil. 6(1):20

    Google Scholar 

  167. Verma V, Gupta A, Gupta MK, Chauhan P (2020) Performance estimation of computed torque control for surgical robot application. J. Mech. Eng. Sci. 14(3):7017–7028

    Google Scholar 

  168. Bembli S, Haddad NK, Belghith S (2019) Computer aided decision model to control an exoskeleton-upper limb system. In: IEEE international conference on advanced systems and emergent technologies (IC_ASET), Hammamet, Tunisia, (2019), pp. 166–172

  169. Tang Z, Zhang K, Sun S, Gao Z, Zhang L, Yang Z (2014) An upper-limb power-assist exoskeleton using proportional myoelectric control. Sensors 14(4):6677–6694

    Google Scholar 

  170. Wu Q, Wang X, Chen B, Wu H (2018) Development of an RBFN-based neural-fuzzy adaptive control strategy for an upper limb rehabilitation exoskeleton. Mechatronics 53:85–94

    Google Scholar 

  171. Brahmi B, Saad M, Luna C, Archambault P, Rahman M (2018) Passive and active rehabilitation control of human upper-limb exoskeleton robot with dynamic uncertainties. Robotica 36(11):1757–1779

    Google Scholar 

  172. Kim MJ, Lee W, Choi J, Chung G, Han KL, Choi IS, Ott C, Chung WK (2019) A passivity-based nonlinear admittance control with application to powered upper-limb control under unknown environmental interactions. IEEE-ASME T Mech 24(4):1473–1484

    Google Scholar 

  173. Lo HS, Xie SQ (2012) Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. Med Eng Phys 34(3):261–268

    Google Scholar 

  174. Kalita B, Dwivedy SK (2020) Nonlinear dynamic response of pneumatic artificial muscle: A theoretical and experimental study. Int J Nonlin Mech 125:103544

    Google Scholar 

  175. Dindorf R, Wos P (2019) Using the bioelectric signals to control of wearable orthosis of the elbow joint with bi-muscular pneumatic servo-drive. Robotica 38:804

    Google Scholar 

  176. Hamid S, Hayek R (2008) Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. Eur Spine J 17(9):1256–1269

    Google Scholar 

  177. Langhorne P, Coupar F, Pollock A (2009) Motor recovery after stroke: a systematic review. Lancet Neurol 8(8):741–754

    Google Scholar 

  178. Eliasson AC, Gordon AM (2019) Constraint-induced movement therapy for children and youth with hemiplegic/unilateral cerebral palsy. In: Miller F, Bachrach S, Lennon N, O'Neil M (eds) Cerebral palsy. Springer, Cham. https://doi.org/10.1007/978-3-319-50592-3_175-1

    Chapter  Google Scholar 

  179. Waller SM, Whitall J (2008) Bilateral arm training: why and who benefits? NeuroRehabilitation 23(1):29–41

    Google Scholar 

  180. Narayan J, Mishra S, Jaiswal G, Dwivedy SK (2020) Novel design and kinematic analysis of a 5-DOFs robotic arm with three-fingered gripper for physical therapy. Mater Today Proc 28(4):2121–2132

    Google Scholar 

  181. Gupta A, Singh A, Verma V, Mondal AK, Gupta MK (2020) Developments and clinical evaluations of robotic exoskeleton technology for human upper-limb rehabilitation. Adv Robot 34(15):1023–1040

    Google Scholar 

  182. Xiao F, Gao Y, Wang Y, Zhu Y, Jhao J (2018) Design and evaluation of a 7-DOF cable-driven upper limb exoskeleton. J Mech Sci Technol 32:855–864

    Google Scholar 

  183. Frisoli A, Sotgiu E, Procopio C, Bergamasco M, Chisari C, Lamola G, Rossi B (2012) Training and assessment of upper limb motor function with a robotic exoskeleton after stroke. In: 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), Rome, (2012), pp. 1782–1787

  184. Saita K, Morishita T, Hyakutake K, Ogata T, Fukuda H, Kamada S, Inoue T (2020) Feasibility of robot-assisted rehabilitation in poststroke recovery of upper limb function depending on the severity. Neurol Med Chir 60(4):217–222

    Google Scholar 

  185. Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML (2005) Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke 36(9):1960–1966

    Google Scholar 

  186. Kahn LE, Lum PS, Rymer WZ, Reinkensmeyer DJ (2006) Robot-assisted movement training for the stroke-impaired arm: Does it matter what the robot does? J Rehabil Res Dev 43(5):619–630

    Google Scholar 

  187. Volpe BT, Lynch D, Rykman-Berland A, Ferraro M, Galgano M, Hogan N, Krebs HI (2008) Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke. Neurorehabil Neural Repair 22(3):305–310

    Google Scholar 

  188. Rabadi MH, Galgano M, Lynch D, Akerman M, Lesser M, Volpe BT (2008) A pilot study of activity-based therapy in the arm motor recovery post stroke: a randomized controlled trial. Clin Rehabil 22(12):1071–1082

    Google Scholar 

  189. Lum PS, Burgar CG, Van der Loos M, Shor PC (2006) MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. J Rehabil Res Dev 43(5):631–643

    Google Scholar 

  190. Lum PS, Burgar CG, Shor PC (2004) Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans Neural Syst Rehabil Eng 12(2):186–194

    Google Scholar 

  191. Coote S, Murphy B, Harwin W, Stokes E (2008) The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke. Clin Rehabil 22(5):395–405

    Google Scholar 

  192. Fazekas G, Horvath M, Troznai T, Toth A (2007) A Robot-mediated upper limb physiotherapy for patients with spastic hemiparesis: a preliminary study. J Rehabil Med 39(7):580–582

    Google Scholar 

  193. Housman SJ, Le V, Rahman T, Sanchez RJ, Reinkensmeyer DJ (2007) Arm-training with T-WREX after chronic stroke: preliminary results of a randomized controlled trial. In: IEEE 10th international conference on rehabilitation robotics, Noordwijk, Netherlands, (2007), pp. 562–568

  194. Housman SJ, Scott KM, Reinkensmeyer DJ (2009) A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair 23(5):505–514

    Google Scholar 

  195. Sanchez RJ, Liu J, Rao S, Shah P, Smith R, Rahman T, Cramer SC, Bobrow JE, Reinkensmeyer DJ (2006) Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans Neural Syst Rehabil Eng 14(3):378–389

    Google Scholar 

  196. Frisoli A, Bergamasco M, Carboncini MC, Rossi B (2009) Robotic assisted rehabilitation in virtual reality with the L-EXOS. Stud Health Technol Inform 145:40–54

    Google Scholar 

  197. Klamroth-Marganska V, Blanco J, Campen K, Curt A, Dietz V, Ettlin T, Felder M, Fellinghauer B, Guidali M, Kollmar A, Luft A (2013) Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol 13(2):159–166

    Google Scholar 

  198. Staubli P, Nef T, Klamroth-Marganska V, Riener R (2009) Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases. J Neuroeng Rehabil. 6(1):46

    Google Scholar 

  199. Milot MH, Spencer SJ, Chan V, Allington JP, Klein J, Chou C, Bobrow JE, Cramer SC, Reinkensmeyer DJ (2013) A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES. J Neuroeng Rehabil. 10(1):112

    Google Scholar 

  200. Loureiro RC, Lamperd B, Collin C, Harwin WS (2009) Reach & grasp therapy: effects of the gentle/G system assessing sub-acute stroke whole-arm rehabilitation. In: IEEE international conference on rehabilitation robotics, Kyoto, Japan, (2009), pp. 755–760

  201. Kutner NG, Zhang R, Butler AJ, Wolf SL, Alberts JL (2010) Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: a randomized clinical trial. Phys Ther 90(4):493–504

    Google Scholar 

  202. Rosenstein L, Ridgel AL, Thota A, Samame B, Alberts JL (2008) Effects of combined robotic therapy and repetitive-task practice on upper-extremity function in a patient with chronic stroke. Am J Occup Ther 62(1):28–35

    Google Scholar 

  203. Frick EM, Alberts JL (2006) Combined use of repetitive task practice and an assistive robotic device in a patient with subacute stroke. Phys Ther 86(10):1378–1386

    Google Scholar 

  204. Colombo R, Sterpi I, Mazzone A, Delconte C, Minuco G, Pisano F (2009) Measuring changes of movement dynamics during robot-aided neurorehabilitation of stroke patients. IEEE Trans Neural Syst Rehabil Eng 18(1):75–85

    Google Scholar 

  205. Casadio M, Giannoni P, Morasso P, Sanguineti V (2009) A proof of concept study for the integration of robot therapy with physiotherapy in the treatment of stroke patients. Clin Rehabil. 23(3):217–228

    Google Scholar 

  206. Carpinella I, Cattaneo D, Abuarqub S, Ferrarin M (2009) Robot-based rehabilitation of the upper limbs in multiple sclerosis: feasibility and preliminary results. J Rehabil Med 41(12):966–970

    Google Scholar 

  207. Casadio M, Sanguineti V, Solaro C, Morasso PG (2007) A haptic robot reveals the adaptation capability of individuals with multiple sclerosis. Int J Rob Res. 26(11–12):1225–1233

    Google Scholar 

  208. Vergaro E, Squeri V, Brichetto G, Casadio M, Morasso P, Solaro C, Sanguineti V (2010) Adaptive robot training for the treatment of incoordination in multiple sclerosis. J Neuroeng Rehabil. 7(1):37

    Google Scholar 

  209. Vanoglio F, Luisa A, Garofali A, Mora C (2013) Evaluation of the effectiveness of Gloreha (Hand Rehabilitation Glove) on hemiplegic patients. Pilot study. In: XIII congress of Italian Society of neurorehabilitation, Bari, Italy, pp. 18–20

  210. Varalta V, Smania N, Geroin C, Fonte C, Gandolfi M, Picelli A, Munari D, Ianes P, Montemezzi G, La Marchina E (2013) March. Effects of passive rehabilitation of the upper limb with robotic device Gloreha on visual-spatial and attentive exploration capacities of patients with stroke issues. In: XIII congress of Italian society of neurorehabilitation, Bari, Italy

  211. Lo AC (2012) Clinical designs of recent robot rehabilitation trials. Am J Phys Med Rehabil 91(11):S204–S216

    Google Scholar 

  212. Singla A, Narayan J, Arora H (2020) Investigating the potential of redundant manipulators in narrow channels. Proc Inst Mech Eng C J Mec Eng Sci. https://doi.org/10.1177/0954406220964512

    Article  Google Scholar 

  213. Narayan J, Dwivedy SK (2020) Towards neuro-fuzzy compensated PID control of lower extremity exoskeleton system for passive gait rehabilitation. IETE J Res. 7:1–18

    Google Scholar 

  214. Gupta M, Narayan J, Dwivedy SK (2020) Modeling of a novel lower limb exoskeleton system for paraplegic patients. In: Maity D, Siddheshwar P, Saha S. (Eds) Advances in fluid mechanics and solid mechanics. Lecture notes in mechanical engineering. Springer, Singapore

  215. Wendong W, Hanhao L, Menghan X, Yang C, Xiaoqing Y, Xing M, Bing Z (2020) Design and verification of a human–robot interaction system for upper limb exoskeleton rehabilitation. Med Eng Phys 79:19–25

    Google Scholar 

  216. Barreiros AP, Dong Y, Ignee A, Wastl D, Dietrich CF (2019) EchoScopy in scanning abdominal diseases; a prospective single center study. Med Ultrasonogr 21(1):8–15

    Google Scholar 

  217. Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, Ringer RJ, Wagner TH, Krebs HI, Volpe BT, Bever CT Jr (2010) Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 362(19):1772–1783

    Google Scholar 

  218. Lee M, Rittenhouse M, Abdullah HA (2005) Design issues for therapeutic robot systems: results from a survey of physiotherapists. J Intell Robot Syst 42(3):239–252

    Google Scholar 

  219. Pei YC, Chen JL, Wong AMK, Tseng KC (2017) An evaluation of the design and usability of a novel robotic bilateral arm rehabilitation device for patients with stroke. Front. Neurorobot 11:36

    Google Scholar 

  220. Vaca Benitez LM, Tabie M, Will N, Schmidt S, Jordan M, Kirchner EA (2013) Exoskeleton technology in rehabilitation: Towards an EMG-based orthosis system for upper limb neuromotor rehabilitation. J Robotics. https://doi.org/10.1155/2013/610589

    Article  Google Scholar 

  221. Kyrkjebø E, Laastad MJ, Stavdahl Ø (2018) Feasibility of the UR5 industrial robot for robotic rehabilitation of the upper limbs after stroke. In: 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS), Madrid, Spain, (2018), pp. 1–6

  222. Kandilakis C, Sasso-Lance E (2019) Exoskeletons for personal use after spinal cord injury. Arch Phys Med Rehabil., In press, pp. 1–7

  223. Stanger CA, Anglin C, Harwin WS, Romilly DP (1994) Devices for assisting manipulation: a summary of user task priorities. IEEE Trans. Rehabil. Eng. 2(4):256–265

    Google Scholar 

  224. Lo K, Stephenson M, Lockwood C (2019) The economic cost of robotic rehabilitation for adult stroke patients: a systematic review. JBI Database Syst. Rev Implement. Rep. 17(4):520–547

    Google Scholar 

  225. Gupta A, Mondal AK, Gupta MK (2019) Kinematic, dynamic analysis and control of 3 DOF upper-limb robotic exoskeleton. J. Eur. En Des Systèmes Autom. 52(3):297–304

    Google Scholar 

  226. Bélaise C, Maso FD, Michaud B, Mombaur K, Begon M (2018) An EMG-marker tracking optimisation method for estimating muscle forces. Multibody Syst Dyn. 42(2):119–143

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotindra Narayan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayan, J., Kalita, B. & Dwivedy, S.K. Development of Robot-Based Upper Limb Devices for Rehabilitation Purposes: a Systematic Review. Augment Hum Res 6, 4 (2021). https://doi.org/10.1007/s41133-020-00043-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41133-020-00043-x

Keywords

Navigation