Skip to main content
Log in

Strategy and potential of homogeneous lean combustion at high load points for turbocharged gasoline engines with direct injection and small displacement

  • Original Paper
  • Published:
Automotive and Engine Technology Aims and scope Submit manuscript

Abstract

In this paper, a homogeneous lean combustion concept for gasoline engines with direct injection, small displacement and turbocharging is investigated under high-load conditions. A representative operating point was selected for this purpose. The tests were carried out on a single-cylinder research engine. In particular, the influence of the center of combustion, charge motion and pressure ratio is discussed. It has been discovered that the center of combustion has a large influence on the stability of homogeneous lean combustion at high load points. The present investigations provide a method of how to achieve an early center of combustion in knock-limited load points of homogeneous lean combustion. Early centers of combustion enable a high air–fuel ratio with good, smooth running and low NOx emissions. In addition to the high charge motion, operation with a positive scavenging gradient and valve overlap can be applied to flush the hot internal residual gas out of the combustion chamber, whereby knocking can be reduced. With the high air–fuel ratio, specific fuel consumption can be reduced substantially and high combustion efficiency can be achieved. The results can be leveraged as a basis for future developments in gasoline engines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The tumble number describes the angular velocity of the charge motion \({\upomega }_{{\text{T}}}\) to the angular velocity of the crankshaft \({\upomega }_{{\text{C}}}\): \({{T} = \text{ }}\frac{{{\upomega }_{{\text{T}}} { }}}{{{\upomega }_{{\text{C}}} }}\). The angular velocity of the charge motion \({\upomega }_{{\text{T}}}\) can be calculated via CFD analysis [12].

Abbreviations

λ :

Air–fuel equivalence ratio of combustion

N :

Engine speed

η :

Efficiency

p :

Pressure

T :

Tumble number

ω :

Angular velocity

ATDC:

After top dead center

AVT:

Active valve train

bp:

Best point

BTDC:

Before top dead center

CAD:

Crank angle degrees

CEI:

Controlled electronic ignition

CFD:

Computational fluid dynamics

CO2 :

Carbon dioxide

COV:

Coefficient of variance

EVC:

Exhaust valve closing

IMEP:

Indicated mean effective pressure

ISFC:

Indicated specific fuel consumption

IVO:

Intake valve opening

L:

Liter

MFB05:

05% Mass fraction burned

MFB50:

50% Mass fraction burned

MFB90:

90% Mass fraction burned

NOx:

Nitrogen oxides

SCR:

Selective catalytic reduction

WLTC:

Worldwide harmonized light duty test cycle

C:

Crankshaft

Exh.:

Exhaust

i:

Indicated

Int.:

Intake

References

  1. Brandt, M.; Hettinger, A.; Schneider, A.; Senftleben, H.; Skowronek, T.: Extension of operating window for modern combustion system by high performance ignition. In: 3. Internationale Tagung Zündsysteme für Ottomotoren, Berlin (2016)

  2. Brinkert, N., Rott, M., Friedrich, J., Weber, S., Freisinger, N., Karl, G.: Konsequente Weiterentwicklung von Stoß-/Stauaufladung am 4-Zylinder Ottomotor. In: 19. Aufladetechnische Konferenz, Dresden (2014)

  3. Heywood, J.B.: Internal Combustion Engines Fundamentals. McGraw-Hill Book Company, New York (1989). (ISBN 0-07-100499-8)

    Google Scholar 

  4. Junker, H.K.: Ein wesentliches Thema bleibt das Downsizing. In: Motortechnische Zeitschrift, 75. Jahrg., 05/2014, S. 22–24

  5. Koch, T.: Verbrennungsmotorenforschung für Antriebe von morgen. In: Automobiltechnischer Zeitschrift extra, Sonderheft für die VDI-FVT 2018/2019, S. 10–12

  6. Lotus Engineering: AVT Active Valve Train—General information and installation, Band edition 18 (2014)

  7. Merker, G.P., Teichmann, R. (eds.): Grundlagen Verbrennungsmotoren, 7th edn. Springer, New York (2014). (ISBN 978-3-658-03194-7)

    Google Scholar 

  8. Motor Presse Stuttgart GmbH & Co.KG, Quelle: https://www.auto-motor-und-sport.de/verkehr/eu-staaten-einigen-sich-auf-schaerfere-co2-grenzwerte/. Accessed 03 Jan 2019

  9. Müller, J., Ritzinger, J., Jost, R., Naunheim, D., Kropp, M.: Einsatz eines Abgasturboladers mit variabler Turbinengeometrie zur Optimierung des ottomotorischen Gemsamtkonzeptes, In: 8. MTZ-Fachtagung “Ladungswechsel im Verbrennungsmotor“ (2015)

  10. Ohler, S.: Entwicklung und Vergleich von Kriterien zur Erkennung der klopfenden Verbrennung in Ottomotoren, Dissertation, Universität der Bundeswehr Hamburg (2014)

  11. Osbourne, R., Lane, A., Turner, N., McWilliam, L., Hinton, N., McAllister, M., Geddes, J., Gidney, J., Cleeton, J., Atkins, P, Morgan, R.: A new-generation lean gasoline engine for reduced CO2 in an electrified world. In: 40. Internationales Wiener Motorensymposium, Wien (2019)

  12. Pischinger, R., Klell, M., Sams, T.: Thermodynamik der Verbrennungskraftmaschine, 3rd edn. Springer, New York (2009). (ISBN 978-3211-99276-0 3)

    Google Scholar 

  13. Rurik, A: Verfahren zum Betreiben einer Verbrennungskraftmaschine; Offenlegungsschrift DE102018003959A1, Deutsches Patentamt (2019)

  14. Schilling, M.: Betriebsstrategien zur Emissionsreduzierung beim Ottomotor mit strahlgeführtem Brennverfahren, Dissertation, Karlsruher Institut für Technologie (KIT) (2012)

  15. Siekmann, H.E., Thamsen, P.U.: Strömungslehre, 2nd edn. Springer, New York (2000). (ISBN 978-3-540-73726-1)

    Book  Google Scholar 

  16. VDI Nachrichten: Mazda mag es mager, Quelle. https://www.vdi-nachrichten.com/technik/mazda-mag-es-mager. Accessed 19 Oct 2019

  17. Zeldovich, Y.B.: The oxidation of nitrogen in combustion and explosions. In: Acta Physicochimica, URSS 21, Heft 4, S. 577–628 (1946)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Rurik.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rurik, A., Otto, F. & Koch, T. Strategy and potential of homogeneous lean combustion at high load points for turbocharged gasoline engines with direct injection and small displacement. Automot. Engine Technol. 5, 71–77 (2020). https://doi.org/10.1007/s41104-020-00061-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41104-020-00061-2

Keywords

Navigation