Skip to main content
Log in

Shared Gamma Frailty Models Based on Additive Hazards

  • Research Article
  • Published:
Journal of the Indian Society for Probability and Statistics Aims and scope Submit manuscript

Abstract

Frailty models are used in the survival analysis to account for the unobserved heterogeneity in individual risks to disease and death. To analyze the bivariate data on related survival times (e.g. matched pairs experiments, twin or family data), the shared frailty models were suggested. These models are based on the assumption that frailty act multiplicatively to hazard rate. In this paper we assume that frailty acts additively to hazard rate. We introduce the shared gamma frailty models with two different baseline distributions namely, the generalized log logistic and the generalized Weibull. We introduce the Bayesian estimation procedure using Markov Chain Monte Carlo technique to estimate the parameters involved in these models. We apply these models to a real life bivariate survival data set of McGilchrist and Aisbett (Biometrics 47:461–466, 1991) related to the kidney infection data and a better model is suggested for the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aalen OO (1980) A model for non-parametric regression analysis of counting processes. Lect Notes Stat 2:1–25

    Article  MathSciNet  MATH  Google Scholar 

  • Aalen OO (1989) A linear regression model for the analysis of lifetimes. Stat Med 8(8):907–925

    Article  Google Scholar 

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Academiai Kiado, Budapest, pp 267–281

    Google Scholar 

  • Bacon RW (1993) A note on the use of the log-logistic functional form for modeling saturation effects. Oxf Bull Econ Stat 55:355–361

    Article  Google Scholar 

  • Bin H (2010) Additive hazards model with time-varying regression coefficients. Acta Mathematica Scientia 30B(4):1318–1326

    Article  MathSciNet  MATH  Google Scholar 

  • Clayton DG, Cuzick J (1985) Multivariate generalizations of the proportional hazards model (with discussion). J Royal Stat Soc Ser A 148:82–117

    Article  MathSciNet  MATH  Google Scholar 

  • Clayton’s DG (1978) A model for association in bivariate life tables and its applications to epidemiological studies of familial tendency in chronic disease incidence. Biometrica 65:141–151

    Article  Google Scholar 

  • Crowder M (1985) A distributional model for repeated failure time measurements. J Royal Stat Soc Ser B 47:447–452

    MathSciNet  Google Scholar 

  • Deshpande JV, Purohit SG (2005) life time data: statistical models and methods. World Scientific, New Jersey

    MATH  Google Scholar 

  • Gelman A, Rubin DB (1992) A single series from the Gibbs sampler provides a false sense of security. In: Bernardo JM, Berger J0, Dawid AP, Smith AFM (eds) Bayesian statistics 4. Oxford University Press, Oxford, pp 625–632

    Google Scholar 

  • Genest C, Mackay J (1986) Joy of Copulas: bivariate distributions with uniform marginals. Am Stat 40(4):280–283

    MathSciNet  Google Scholar 

  • Geweke J (1992) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Bernardo JM, Berger J, Dawid AP, Smith AFM (eds) Bayesian statistics 4. Oxford University Press, Oxford, pp 169–193

    Google Scholar 

  • Mudholkar GS, Srivastava DK, Kollia GD (1995) The exponentiated Weibull family: a reanalysis of the bus-motor-failure data. Technometrics 37(4):436–445

    Article  MATH  Google Scholar 

  • Mudholkar GS, Srivastava DK, Kollia GD (1996) A generalization of the Weibull distribution with application to the analysis of survival data. J Am Stat Assoc 91(436):1575–1583

    Article  MathSciNet  MATH  Google Scholar 

  • Mudholkar GS, Srivastava DK (1993) Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans Reliab 42(2):299–302

    Article  MATH  Google Scholar 

  • Hanagal DD, Pandey A, Sankaran PG (2016) Shared frailty model based on reversed hazard rate for left censoring data. Commun Stat Simul Comput (to appear)

  • Hanagal DD (2006) A gamma frailty regression model in bivariate survival data. IAPQR Trans 31:73–83

    Google Scholar 

  • Hanagal DD (2007) Gamma frailty regression models in mixture distributions. Econ Qual Control 22(2):295–302

    Article  MATH  Google Scholar 

  • Hanagal DD (2010) Modeling heterogeneity for bivariate survival data by the compound poisson distribution with random scale. Stat Probab Lett 80:1781–1790

    Article  MathSciNet  MATH  Google Scholar 

  • Hanagal DD, Bhambure SM (2015) Comparison of shared gamma frailty models using Bayesian approach. Model Assist Stat Appl 10:25–41

    Google Scholar 

  • Hanagal DD, Dabade AD (2013) Bayesian estimation of parameters and comparison of shared gamma frailty models. Commun Stat Simul Comput 42(4):910–931

    Article  MathSciNet  MATH  Google Scholar 

  • Hanagal DD, Pandey A (2014) Gamma shared frailty model based on reversed hazard rate for bivariate survival data. Stat Probab Lett 88:190–196

    Article  MathSciNet  MATH  Google Scholar 

  • Hanagal DD, Pandey A (2015a) Gamma frailty models for bivarivate survival data. J Stat Comput Simul 85(15):3172–3189

    Article  MathSciNet  Google Scholar 

  • Hanagal DD, Pandey A (2015b) Gamma shared frailty model based on reversed hazard rate. Commun Stat Theory Methods 45(7):2071–2088

    Article  MathSciNet  MATH  Google Scholar 

  • Hanagal DD, Sharma R (2013) Modeling heterogeneity for bivariate survival data by shared gamma frailty regression model. Model Assist Stat Appl 8:85–102

    Google Scholar 

  • Hanagal DD, Sharma R (2015a) Comparisons of frailty models for acute leukemia data under Geompertz baseline distribution. Commun Stat Theory Methods 44(7):1338–1350

    Article  MathSciNet  MATH  Google Scholar 

  • Hanagal DD, Sharma R (2015b) Bayesian inference in Marshall–Olkin bivariate exponential shared gamma frailty regression model under random censoring. Commun Stat Theory Methods 44(1):24–47

    Article  MathSciNet  MATH  Google Scholar 

  • Hosmer DW, Royston P (2002) Using Aalen’s linear hazards model to investigate time-varying effects in the proportional hazards regression model. Strata J 2(4):331–350

    Google Scholar 

  • Hougaard P (1986) A class of multivariate failure time distributions. Biometrika 73:671–678

    MathSciNet  MATH  Google Scholar 

  • Hougard P (1987) Modelling multivariate survival. Scand J Stat 14(4):291–304

    MathSciNet  Google Scholar 

  • Ibrahim JG, Chen Ming-Hui, Sinha D (2001) Bayesian survival analysis. Springer, Berlin

    Book  MATH  Google Scholar 

  • Jeffreys H (1961) Theory of probability, 3rd edn. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Kass RA, Raftery AE (1995) Bayes’ factor. J Am Stat Assoc 90:773–795

    Article  MathSciNet  MATH  Google Scholar 

  • Kheiri S, Kimber A, Meshkani MR (2007) Bayesian analysis of an inverse Gaussian correlated frailty model. Comput Stat Data Anal 51:5317–5326

    Article  MathSciNet  MATH  Google Scholar 

  • Lin DY, Ying Z (1994) Semiparametric analysis of the additive risk model. Biometrika 81(1):61–71

    Article  MathSciNet  MATH  Google Scholar 

  • McGilchrist CA, Aisbett CW (1991) Regression with frailty in survival analysis. Biometrics 47:461–466

    Article  Google Scholar 

  • Nielsen GG, Gill RD, Andersen PK, Sorensen TIA (1992) A counting process approach to maximum likelihood estimation in frailty models. Scand J Stat 19:25–43

    MathSciNet  MATH  Google Scholar 

  • Oakes D (1982) A model for association in bivariate survival data. J Royal Stat Soc B 44:414–422

    MathSciNet  MATH  Google Scholar 

  • Oakes D (1989) Bivariate survival models induced by frailties. J Am Stat Assoc 84(406):487–493

    Article  MathSciNet  MATH  Google Scholar 

  • O’Neill TJ (1986) Inconsistency of misspecified proportional hazards model. Stat Probab Lett 4:219–222

    Article  MathSciNet  MATH  Google Scholar 

  • Raftey AE (1994) Approximate Bayes factors and accounting for model uncertainty in generalized linear models. Biometrika 83(2):251–266

    Article  Google Scholar 

  • Santos CA, Achcar JA (2010) A Bayesian analysis for multivariate survival data in the presence of covariates. J Stat Theory Appl 9:233–253

    MathSciNet  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Annals Stat 6(2):461–464

    Article  MathSciNet  MATH  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, Van der Linde A (2002) Bayesian measure of model complexity and fit (with discussion). J Royal Stat Soc B 64:583–639

    Article  MATH  Google Scholar 

  • Vaupel JW, Yashin AI, Hauge M, Harvald B, Holm N, Liang X (1992) Strategies of modelling genetics in survival analysis. In: What Can We Learn From Twins Data?. Paper presented on PAA meeting in Denver, CO, April 30-May 2

  • Vaupel JW, Manton KG, Stallaed E (1979) The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16:439–454

    Article  Google Scholar 

  • Vaupel JW (1991a) Relatives’ risks: frailty models of life history data. Theor Popul Biol 37(1):220–234

    Article  MathSciNet  MATH  Google Scholar 

  • Vaupel JW (1991b) Kindred lifetimes: frailty models in population genetics. In: Adams Julian et al (eds) Convergent questions in genetics and demography. Oxford University Press, Oxford, pp 155–170

    Google Scholar 

  • Vaupel JW, Yashin AI, Hauge M, Harvald B, Holm N, Liang X (1991) Survival analysis in genetics: danish twins data applied to gerontological question. In: Klein JP, Goel PK (eds) Survival analysis: state of the art. Academic Publisher, Kluwer, pp 121–138

    Google Scholar 

  • Xie X, Strickler HD, Xue X (2013) Additive hazard regression models: an application to the natural history of human papillomavirus. Comput Math Methods Med 2013:1–7

    Article  MathSciNet  Google Scholar 

  • Yin G, Cai J (2004) Additive hazards model with multivariate failure time data. Biometrika 91(4):801–818

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D. Hanagal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanagal, D.D., Pandey, A. Shared Gamma Frailty Models Based on Additive Hazards. J Indian Soc Probab Stat 17, 161–184 (2016). https://doi.org/10.1007/s41096-016-0011-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41096-016-0011-7

Keywords

Navigation