Kyprianidis, J. E.; Collomosse, J.; Wang, T. H.; Isenberg, T. State of the “art”: A taxonomy of artistic stylization techniques for images and video. IEEE Transactions on Visualization and Computer Graphics Vol. 19, No. 5, 866–885, 2013.
Article
Google Scholar
Rosin, P.; Collomosse, J. Image and Video-Based Artistic Stylisation. London: Springer London, 2013.
Book
Google Scholar
Gatys, L. A.; Ecker, A. S.; Bethge, M. Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2414–2423, 2016.
Jing, Y. C.; Yang, Y. Z.; Feng, Z. L.; Ye, J. W.; Yu, Y. Z.; Song, M. L. Neural style transfer: A review. IEEE Transactions on Visualization and Computer Graphics Vol. 26, No. 11, 3365–3385, 2020.
Article
Google Scholar
Semmo, A.; Isenberg, T.; Döllner, J. Neural style transfer: A paradigm shift for image-based artistic rendering? In: Proceedings of the Symposium on Non-Photorealistic Animation and Rendering, Article No. 5, 2017.
Gooch, A. A.; Long, J.; Ji, L.; Estey, A.; Gooch, B. S. Viewing progress in non-photorealistic rendering through Heinlein’s lens. In: Proceedings of the 8th International Symposium on Non-Photorealistic Animation and Rendering, 165–171, 2010.
Hall, P.; Lehmann, A.-S. Don’t measure—Appreciate! NPR seen through the prism of art history. In: Image and Video-Based Artistic Stylisation. Computational Imaging and Vision, Vol. 42. Rosin, P.; Collomosse, J. Eds. Springe London, 333–351, 2013.
Mould, D.; Rosin, P. L. Developing and applying a benchmark for evaluating image stylization. Computers & Graphics Vol. 67, 58–76, 2017.
Article
Google Scholar
Rosin, P. L.; Mould, D.; Berger, I.; Collomosse, J.; Lai, Y.; Li, C.; Li, H.; Shamir, A.; Wand, M.; Wang, T.; et al. Benchmarking non-photorealistic rendering of portraits. In: Proceedings of the Symposium on Non-Photorealistic Animation and Rendering, Article No. 11, 2017.
Fisher, R. B. CVonline. Available at http://homepages.inf.ed.ac.uk/rbf/CVonline.
Kumar, M. P. P.; Poornima, B.; Nagendraswamy, H. S.; Manjunath, C. A comprehensive survey on non-photorealistic rendering and benchmark developments for image abstraction and stylization. Iran Journal of Computer Science Vol. 2, No. 3, 131–165, 2019.
Article
Google Scholar
Buolamwini, J.; Gebru, T. Gender shades: Intersectional accuracy disparities in commercial gender classification. In: Proceedings of the Conference on Fairness, Accountability and Transparency, 77–91, 2018.
Azami, R.; Mould, D. Detail and color enhancement in photo stylization. In: Proceedings of the Symposium on Computational Aesthetics, Article No. 5, 2017.
Du, L. How much deep learning does neural style transfer really need? An ablation study. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 3139–3148, 2020.
Rosin, P. L.; Lai, Y. K. Watercolour rendering of portraits. In: Image and Video Technology. Lecture Notes in Computer Science, Vol. 10799. Satoh, S. Ed. Springer Cham, 268–282, 2018.
Wu, T.; Chen, X.; Lu, L. Q. Field coupling-based image filter for sand painting stylization. Mathematical Problems in Engineering Vol. 2018, 3670498, 2018.
Google Scholar
Low, P. E.; Wong, L. K.; See, J.; Ng, R. Pic2PolyArt: Transforming a photograph into polygon-based geometric art. Signal Processing: Image Communication Vol. 91, 116090, 2021.
Google Scholar
Meier, P.; Lohweg, V. Content representation for neural style transfer algorithms based on structural similarity. In: Proceedings of the Computational Intelligence Workshop, 2019.
Shen, Q.; Zou, L.; Wang, F. J.; Huang, Z. J. A scale-adaptive color preservation neural style transfer method. In: Proceedings of the 5th International Conference on Mathematics and Artificial Intelligence, 5–9, 2020.
Klingbeil, M.; Pasewaldt, S.; Semmo, A.; Döllner, J. Challenges in user experience design of image filtering apps. In: Proceedings of the SIGGRAPH Asia Mobile Graphics & Interactive Applications, Article No. 22, 2017.
Trapp, M.; Pasewaldt, S.; Dürschmid, T.; Semmo, A.; Döllner, J. Teaching image-processing programming for mobile devices: A software development perspective. In: Proceedings of the Annual European Association for Computer Graphics Conference: Education Papers, 17–24, 2018.
Wang, Z.; Bovik, A. C.; Sheikh, H. R.; Simoncelli, E. P. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing Vol. 13, No. 4, 600–612, 2004.
Article
Google Scholar
Zhang, R.; Isola, P.; Efros, A. A.; Shechtman, E.; Wang, O. The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 586–595, 2018.
Zamir, S. W.; Vazquez-Corral, J.; Bertalmío, M. Vision models for wide color gamut imaging in cinema. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 43, No. 5, 1777–1790, 2019.
Article
Google Scholar
Kettunen, M.; Härkönen, E.; Lehtinen, J. E-LPIPS: Robust perceptual image similarity via random transformation ensembles. arXiv preprint arXiv:1906.03973, 2019.
Moorthy, A. K.; Bovik, A. C. Blind image quality assessment: From natural scene statistics to perceptual quality. IEEE Transactions on Image Processing Vol. 20, No. 12, 3350–3364, 2011.
MathSciNet
Article
Google Scholar
Mittal, A.; Moorthy, A. K.; Bovik, A. C. No-reference image quality assessment in the spatial domain. IEEE Transactions on Image Processing Vol. 21, No. 12, 4695–4708, 2012.
MathSciNet
Article
Google Scholar
Zhang, L.; Zhang, L.; Bovik, A. C. A feature-enriched completely blind image quality evaluator. IEEE Transactions on Image Processing Vol. 24, No. 8, 2579–2591, 2015.
MathSciNet
Article
Google Scholar
Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, 6629–6640, 2017.
Bińkowski, M.; Sutherland, D. J.; Arbel, M.; Gretton, A. Demystifying MMD GANs. In: Proceedings of the 6th International Conference on Learning Representations, 2018.
Isenberg, T. Evaluating and validating non-photorealistic and illustrative rendering. In: Image and Video-Based Artistic Stylisation. Computational Imaging and Vision, Vol. 42. Rosin, P.; Collomosse, J. Eds. Springer London, 311–331, 2013.
Hertzmann, A. Non-Photorealistic Rendering and the science of art. In: Proceedings of the 8th International Symposium on Non-Photorealistic Animation and Rendering, 147–157, 2010.
Mould, D. Authorial subjective evaluation of non-photorealistic images. In: Proceedings of the Workshop on Non-Photorealistic Animation and Rendering, 49–56, 2014.
Li, Y. Z.; Kobatake, H. Extraction of facial sketch images and expression transformation based on FACS. In: Proceedings of the International Conference on Image Processing, 520–523, 1995.
Yaniv, J.; Newman, Y.; Shamir, A. The face of art: Landmark detection and geometric style in portraits. ACM Transactions on Graphics Vol. 38, No. 4, Article No. 60, 2019.
Zhao, M.; Zhu, S.-C. Artistic rendering of portraits. In: Image and Video-Based Artistic Stylisation. Computational Imaging and Vision, Vol. 42. Rosin, P.; Collomosse, J. Eds. Springer London, 237–253, 2013.
Li, C.; Wand, M. Combining Markov random fields and convolutional neural networks for image synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2479–2486, 2016.
Berger, I.; Shamir, A.; Mahler, M.; Carter, E.; Hodgins, J. Style and abstraction in portrait sketching. ACM Transactions on Graphics Vol. 32, No. 4, Article No. 55, 2013.
Yi, R.; Liu, Y. J.; Lai, Y. K.; Rosin, P. L. APDrawingGAN: Generating artistic portrait drawings from face photos with hierarchical GANs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10735–10744, 2019.
Rosin, P. L.; Lai, Y.-K. Non-photorealistic rendering of portraits. In: Proceedings of the workshop on Computational Aesthetics, 159–170, 2015.
Winnemöller, H.; Kyprianidis, J. E.; Olsen, S. C. XDoG: An eXtended difference-of-Gaussians compendium including advanced image stylization. Computers & Graphics Vol. 36, No. 6, 740–753, 2012.
Article
Google Scholar
Rosin, P. L.; Lai, Y. K. Image-based portrait engraving. arXiv preprint arXiv:2008.05336, 2020.
Son, M.; Lee, Y. J.; Kang, H.; Lee, S. Structure grid for directional stippling. Graphical Models Vol. 73, No. 3, 74–87, 2011.
Article
Google Scholar
Semmo, A.; Limberger, D.; Kyprianidis, J. E.; Döllner, J. Image stylization by interactive oil paint filtering. Computers & Graphics Vol. 55, 157–171, 2016.
Article
Google Scholar
Doyle, L.; Anderson, F.; Choy, E.; Mould, D. Automated pebble mosaic stylization of images. Computational Visual Media Vol. 5, No. 1, 33–44, 2019.
Article
Google Scholar
Bruce, V.; Young, A. Face Perception. Psychology Press, 2013.
Van Koppen, P. J.; Lochun, S. K. Portraying perpetrators: The validity of offender descriptions by witnesses. Law and Human Behavior Vol. 21, No. 6, 661–685, 1997.
Article
Google Scholar
Fahsing, I. A.; Ask, K.; Granhag, P. A. The man behind the mask: Accuracy and predictors of eyewitness offender descriptions. Journal of Applied Psychology Vol. 89, No. 4, 722–729, 2004.
Article
Google Scholar
Dobs, K.; Isik, L.; Pantazis, D.; Kanwisher, N. How face perception unfolds over time. Nature Communications Vol. 10, No. 1, 1258, 2019.
Article
Google Scholar
Wheeler, B. AlgDesign: Algorithmic experimental design. R package version 1.1–7. 2014. Available at https://cran.rproject.org/web/packages/AlgDesign/.
Atkinson, A.; Donev, A.; Tobias, R. Optimum Experimental Designs, with SAS, Volume 34. Oxford University Press, 2007.
Fedorov, V. Theory of Optimal Experiments. Academic Press, 1972.
Doyle, R. Ethnic groups in the world. Scientific American Vol. 279, No. 3, 30, 1998.
Article
Google Scholar
McLellan, B.; McKelvie, S. J. Effects of age and gender on perceived facial attractiveness. Canadian Journal of Behavioural Science/Revue Canadienne des Sciences du Comportement Vol. 25, No. 1, 135–142, 1993.
Article
Google Scholar
Batres, C.; Kannan, M.; Perrett, D. I. Familiarity with own population’s appearance influences facial preferences. Human Nature Vol. 28, No. 3, 344–354, 2017.
Article
Google Scholar
Cooper, P. A.; Maurer, D. The influence of recent experience on perceptions of attractiveness. Perception Vol. 37, No. 8, 1216–1226, 2008.
Article
Google Scholar
Sanakoyeu, A.; Kotovenko, D.; Lang, S.; Ommer, B. A style-aware content loss for real-time HD style transfer. In: Computer Vision — ECCV 2018. Lecture Notes in Computer Science, Vol. 11212. Ferrari, V.; Hebert M.; Sminchisescu C.; Weiss, Y. Eds. Springer Cham, 698–714, 2018.
Cha, S. H.; Srihari, S. N. On measuring the distance between histograms. Pattern Recognition Vol. 35, No. 6, 1355–1370, 2002.
Article
Google Scholar
Wauthier, F. L.; Jordan, M. I.; Jojic, N. Efficient ranking from pairwise comparisons. In: Proceedings of the 30th International Conference on Machine Learning, Vol. 28, III-109–III-117, 2013.