Skip to main content
Log in

A comprehensive survey on non-photorealistic rendering and benchmark developments for image abstraction and stylization

  • Review
  • Published:
Iran Journal of Computer Science Aims and scope Submit manuscript

Abstract

This survey presents a comprehensive study on non-photorealistic rendering (NPR). NPR technique renders 2D input image into abstracted and artistic stylized images. NPR mainly dwells on image processing, computer vision, and visualizing the graphics processing techniques. The survey highlights the evolution of IA–AR system and the subsequent classification of NPR techniques. The survey also has cognized the various works done on stroke-based rendering, color image analogy, region-based rendering, image filtering abstraction, and stylization. The inference drawn from the survey is the computer system using a stylus to fully automatic structure-preserving image abstraction and stylization got evolved from a traditional method of human interaction. From the survey carried out on the most significant papers from 1963 to 2017, we felt the need for setting up of benchmark guidelines, the data set with varies subjective matters, and quality assessment techniques with various statistical essences. From the survey information pertaining to benchmark image characteristics, properties and their constraints with the contextual feature in an image have been identified. Finally, survey work listed out the NPR application in various fields of image processing and highlighted empirical challenges and hampers in NPR domain. This survey work has empowered us to proceed in the right direction and enthusiasm to bring forth the problem statement and carry out research work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Johnson, T.E.: Sketchpad III: a computer program for drawing in three dimensions. In: Proceedings of the May 21–23, 1963, Spring Joint Computer Conference (AFIPS ‘63(Spring)). ACM, New York (1963). http://dx.doi.org/10.1145/1461551.1461592

  2. Appel, A.: The notion of quantitative invisibility and the machine rendering of solids. In: Rosenthal, S. (ed.) Proceedings of the 1967 22nd National Conference (ACM ‘67), pp. 387–393. ACM, New York (1967). http://dx.doi.org/10.1145/800196.806007

  3. Baecker, R.M.: Picture-driven animation. In: Proceedings of the May 14–16, 1969, Spring Joint Computer Conference (AFIPS ‘69 (Spring)), pp. 273–288. ACM, New York, NY (1969). https://doi.org/10.1145/1476793.1476838

  4. Perlin, K.: An image synthesizer. In: Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques 1985 (SIGGRAPH ‘85) (1985). http://dx.doi.org/10.1145/325334.325247

  5. Kyprianidis, J.E., Collomosse, J., Wang,T., Isenberg,T.: State of the “art”: a taxonomy of artistic stylization techniques for images and video. In: IEEE Transactions on Visualization and Computer Graphics 19, 5 (May 2013), pp. 866–885 (2013). http://dx.doi.org/10.1109/TVCG.2012.160

  6. Haeberli, P.: Paint by numbers: abstract image representations. In: Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH 1990, pp. 207–214. ACM, New York (1990). http://dx.doi.org/10.1145/97879.97902

  7. DeCarlo, D., Santella, A.: Stylization and abstraction of photographs. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ‘02), pp. 769–776. ACM, New York, NY (2002). https://doi.org/10.1145/566570.566650

  8. Winnemöller, H., Olsen, S.C., Gooch, B.: Real-time video abstraction. In: ACM-Transaction Graphics. 25, 3 (July 2006), pp. 1221–1226 (2006). https://doi.org/10.1145/1141911.1142018

  9. Kang, H., Lee, S., Chui, C.K.: Flow-based image abstraction. In: IEEE Transactions on Visualization and Computer Graphics 15, 1 (January 2009), pp. 62–76 (2009). http://dx.doi.org/10.1109/TVCG.2008.81

  10. Anders, A., Marc, A.: . Approximating bounded, non-orientable surfaces from points. In: Proceedings of the Shape Modeling International 2004(SMI ‘04), pp. 243–252. IEEE Computer Society, Washington, DC (2004). https://doi.org/10.1109/SMI.2004.14

  11. Hegde, S., Gatzidis, C., Tian, F.: Painterly rendering techniques: a state-of-the-art review of current approaches. Comput. Anim. Virtual Worlds 24(1), 43–64 (2013). https://doi.org/10.1002/cav.1435

    Article  Google Scholar 

  12. Kaplan, M., Gooch, B., Cohen, E.: Interactive artistic rendering. In: Proceedings of the 1st International Symposium on Non-photorealistic Animation and Rendering (NPAR ‘00), pp. 67–74. ACM, New York (2000). https://doi.org/10.1145/340916.340925

  13. Salisbury, M.P., Anderson, S.E., Barzel, R., Salesin, D.H. Interactive pen-and-ink illustration. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ‘94), pp. 101-108. ACM, New York (1994). https://doi.org/10.1145/192161.192185

  14. Hertzmann, A.: Painterly rendering with curved brush strokes of multiple sizes. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ‘98), pp. 453–460. ACM, New York (1998). http://dx.doi.org/10.1145/280814.280951

  15. Salisbury, M.P., Wong, M.T., Hughes, J.F., Salesin, D.H.: Orientable textures for image-based pen-and-ink illustration. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ‘97), pp. 401-406. ACM Press/Addison-Wesley Publishing Co., New York (1997). https://doi.org/10.1145/258734.258890

  16. Gooch, B., Reinhard, E., Gooch, A.: Human facial illustrations: creation and psychophysical evaluation. ACM Trans. Graph. 23, 1 (January 2004), pp. 27–44 (2004). http://dx.doi.org/10.1145/966131.966133

  17. Grubert, J., Carpendale, S., Isenberg, T.: Interactive stroke-based npr using hand postures on large displays. Technical Report 2007–2008, pp. 279–282, 35, Department of Computer Science, University of Calgary, the short paper at Eurographics December 2008 (2008)

  18. O’Donovan, P., Hertzmann, A.: AniPaint: interactive painterly animation from video. In: IEEE Transactions on Visualization and Computer Graphics 18, 3 (March 2012), pp. 475–487 (2012). http://dx.doi.org/10.1109/TVCG.2011.51

  19. Santella, A., DeCarlo, D.: Abstracted painterly renderings using eye-tracking data. In: Proceedings of the 2nd International Symposium on Non-photorealistic Animation and Rendering (NPAR ‘02). ACM, New York (2002). http://dx.doi.org/10.1145/508530.508544

  20. Kang, H.W., He, W., Chui, C.K., Chakraborty, U.K.: Interactive Sketch Generation. Vis. Comput 21, 821–830 (2005). https://doi.org/10.1007/s00371-005-0328-9

    Article  Google Scholar 

  21. Zhao, M., Zhu, S.-C.: Abstract painting with interactive control of perceptual entropy. In: ACM Trans. Appl. Percept. 10, 1, Article 5 (March 2013) (2013). http://dx.doi.org/10.1145/2422105.2422110

  22. Semmo, A., Limberger, D., Kyprianidis, J.E., Döllner, J.: Image stylization by interactive oil paint filtering. Comput. graph.55, (April 2016), pp. 157–171 (2016). https://doi.org/10.1016/j.cag.2015.12.001

  23. Bousseau, A., Kaplan, M., Thollot, J., Sillion, F.X.: Interactive watercolor rendering with temporal coherence and abstraction. In: Proceedings of the 4th International Symposium on Non-photorealistic Animation and Rendering (NPAR ‘06), pp. 141–149. ACM, New York (2006). https://doi.org/10.1145/1124728.1124751

  24. Lu, J., Sander, P.V., Finkelstein, A.: Interactive Painterly Stylization of Images, Videos and 3D Animations. In: Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D ‘10), pp. 127–134. ACM, New York (2010). http://dx.doi.org/10.1145/1730804.173082

  25. Zhang, E., Hays, J., Turk, G.: . Interactive tensor field design and visualization on surfaces. In: IEEE Transactions on Visualization and Computer Graphics 13, 1 (January 2007), pp. 94–107 (2007). http://dx.doi.org/10.1109/TVCG.2007.16

  26. Haggerty, P.: Almost automatic computer painting. IEEE Comput. Graph. Appl. 11, 11–12 (1991). https://doi.org/10.1109/mcg.1991.10051

    Article  Google Scholar 

  27. Shiraishi, M., Yamaguchi, Y.: An algorithm for automatic painterly rendering based on local source image approximation. In: Proceedings of the 1st International Symposium on Non-photorealistic Animation and Rendering (NPAR ‘00), pp. 53–58. ACM, New York (2000). https://doi.org/10.1145/340916.340923

  28. Collomosse, J.P., Hall, P.M.: Painterly rendering using image salience. In: Proceedings of the 20th UK Conference on Eurographics (EGUK ‘02), pp. 122–132. IEEE Computer Society, Washington, DC (2002)

  29. Shugrina, M., Betke, M., Collomosse, J.: Empathic painting: interactive stylization through observed emotional state. In: Proceedings of the 4th International Symposium on Non-photorealistic Animation and Rendering (NPAR ‘06), pp. 87–96. ACM, New York (2006). https://doi.org/10.1145/1124728.1124744

  30. Szirányi ,T., Tóth, Z.: Optimization of paintbrush rendering of images by dynamic mcmc methods. In: Figueiredo, M., Zerubia, J., Jain, A.K. (eds.) Proceedings of the Third International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR ‘01), pp. 201–215. Springer-Verlag, Berlin, Heidelberg (2001)

  31. Wei, L.-Y., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ‘00), pp. 479-488. ACM Press/Addison-Wesley Publishing Co., New York (2000). http://dx.doi.org/10.1145/344779.345009

  32. Ashikhmin, M.: Fast texture transfer. IEEE Comput. Graph. Appl. 23, 38–43 (2003). https://doi.org/10.1109/MCG.2003.1210863

    Article  Google Scholar 

  33. Hertzmann, A.: Paint by relaxation. In: Ho-Shing Ip, H., Magnenat-Thalmann, N., Lau, R.W.H., Chua, T.S. (eds.) Computer Graphics International 2001 (CGI ‘01), pp. 47–54. IEEE Computer Society, Washington, DC, USA (2001)

  34. Wen, F., Luan, Q., Liang, L., Xu, Y.-Q., Shum, H.-Y.: Color sketch generation. In: Proceedings of the 4th International Symposium on Non-photorealistic Animation and Rendering (NPAR ‘06), pp. 47–54. ACM, New York (2006). https://doi.org/10.1145/1124728.1124737

  35. Setlur, V. Wilkinson, S.: Automatic stained glass rendering. In: Nishita. T., Peng, Q., Seidel, H.-P. (eds.) Proceedings of the 24th International Conference on Advances in Computer Graphics (CGI’06), pp. 682–691. Springer-Verlag, Berlin, Heidelberg (2006). http://dx.doi.org/10.1007/11784203_66

  36. Litwinowicz, P.: Processing images and video for an impressionist effect. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ‘97), pp. 407–414. ACM Press/Addison-Wesley Publishing Co., New York (1997). https://doi.org/10.1145/258734.258893

  37. Tresset, P., Leymarie, F.F.: Generative portrait sketching. In: Proc VSMM 2005, pp. 739–748, Hal Twaites (2005)

  38. Colton, S., Valstar, M. F., Pantic, M.: Emotionally aware automated portrait painting. In: Proceedings of the 3rd International Conference on Digital Interactive Media in Entertainment and Arts (DIMEA ‘08), pp. 304–311. ACM, New York (2008). https://doi.org/10.1145/1413634.1413690

  39. Mandryk. R.L., Mould. D., Li, H.: Evaluation of emotional response to non-photorealistic images. In: Spencer, S.N. (ed.) Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Non-photorealistic Animation and Rendering (NPAR ‘11), pp. 7–16. ACM, New York (2011). https://doi.org/10.1145/2024676.2024678

  40. Collomosse, J.P., Hall, P.M.: Genetic paint: a search for salient paintings. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R. (eds.) Proceedings of the 3rd European Conference on Applications of Evolutionary Computing (EC’05), pp. 437–447. Springer-Verlag, Berlin, Heidelberg (2005). http://dx.doi.org/10.1007/978-3-540-32003-6_44

  41. Collomosse, J.P., Rowntree, D., Hall, P.M.: Stroke surfaces: temporally coherent artistic animations from video. In: IEEE Transactions on Visualization and Computer Graphics, vol 11, 5 (September 2005), pp. 540–549 (2005). http://dx.doi.org/10.1109/TVCG.2005.85

  42. Ostromoukhov, V. Hersch, R.D.: Artistic screening. In: Mair, S.G., Cook, R. (eds.) Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ‘95), pp. 219–228. ACM, New York (1995). https://doi.org/10.1145/218380.218445

  43. Ostromoukhov, V., Emmel, P., Rudaz, N., Amidror, I., Hersch, R.D.: Multi-level colour halftoning algorithms. Intl. symposium on advanced imaging and network technologies. Berlin, Oct 1996. SPIE 2949, 332–340 (1996)

    Google Scholar 

  44. Ostromoukhov, V. Hersch, R.D.: Multi-color and artistic dithering. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ‘99), pp. 425–432. ACM Press/Addison-Wesley Publishing Co., New York (1999). http://dx.doi.org/10.1145/311535.311605

  45. Ostromoukhov, V.: Digital facial engraving. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ‘99), pp. 17–424. ACM Press/Addison-Wesley Publishing Co., New York (1999). http://dx.doi.org/10.1145/311535.311604

  46. Ulichney, R.A.: Review of halftoning techniques. In: Proc. SPIE 3963, Color Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts V (1999). https://doi.org/10.1117/12.373419

  47. Streit, L., Buchanan, J.: Importance driven halftoning. Comput. Graph. Forum 173, 207–217 (1998). https://doi.org/10.1111/1467-8659.00268

    Article  Google Scholar 

  48. Ostromoukhov, V., Hersch, R.D., Amidror, I.: Rotated dispersed dither: a new technique for digital halftoning. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ‘94), pp. 123–130. ACM, New York (1994). https://doi.org/10.1145/192161.192188

  49. Verevka, O., Buchanan, J.W.: Halftoning with image-based dither screens. In: Proceedings of the 1999 Conference on Graphics Interface ‘99, pp. 167–174. Morgan Kaufmann Publishers Inc., San Francisco (1999)

  50. Hausner A.: Pointillist halftoning. In: Proc. CGIM, pp. 134–139. ACTA Press, Calgary (2005)

  51. Streit, L., Veryovka, O., Buchanan, J.: Non-photorealistic rendering using an adaptive halftoning technique. In: Proceedings of the Western Computer Graphics Symposium, pp. 37–45. Banff (1999)

  52. Li, Hua, Mould, David: Contrast-aware halftoning. Comput. Graph. Forum. 29(2), 273–280 (2010). https://doi.org/10.1111/j.1467-8659.2009.01596.x

    Article  Google Scholar 

  53. Ahmed, A.G.M., Deussen, O.: Amplitude modulated line-based halftoning. In: Proceedings of the Conference on Computer Graphics & Visual Computing (CGVC ‘16), pp. 41–43. Eurographics Association, Goslar (2016). https://doi.org/10.2312/cgvc.20161294

  54. Kim, D., Son, M., Lee, Y., Kang, H., Lee, S.: Feature-guided image stippling. In: Proceedings of the Nineteenth Eurographics Conference on Rendering (EGSR ‘08), pp. 1209–1216. Eurographics Association, Aire-la-Ville, (2008). http://dx.doi.org/10.1111/j.1467-8659.2008.01259.x

  55. Li, H., Mould, D.: Structure-preserving stippling by priority-based error diffusion. In: Proceedings of Graphics Interface 2011 (GI ‘11), pp. 127–134. Canadian Human-Computer Communications Society, School of Computer Science, University of Waterloo, Waterloo (2011)

  56. Pang, W.-M., Qu,Y., Wong, T.-T., Cohen-Or, D., Heng, P.-A.: Structure-aware Halftoning. In: ACM-SIGGRAPH-2008 papers (SIGGRAPH ‘08). ACM, New York (2008). https://doi.org/10.1145/1399504.1360688

  57. Son, M., Lee, Y., Kang, H., Lee, S.: Structure grid for directional stippling. Graph. Models 73, 74–87 (2011). https://doi.org/10.1016/j.gmod.2010.12.001

    Article  Google Scholar 

  58. Hausner, A.: Simulating decorative mosaics. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ‘01), pp. 573–580. ACM, New York (2001). https://doi.org/10.1145/383259.383327

  59. Elber, G., Wolberg, G.: Rendering traditional mosaics. Vis. Comput. 19(1), 67–78 (2003)

    Article  Google Scholar 

  60. Kim, J., Pellacini, F.: Jigsaw image mosaics. In: Proceedings of the 29th Annual Conference on Computer-Graphics and Interactive Techniques (SIGGRAPH ‘02), pp. 657–664. ACM, New York (2002). https://doi.org/10.1145/566570.566633

  61. Di Blasi, G., Gallo, G., Petralia, M.: Fast techniques for mosaic rendering. In: Neumann, L., Sbert, M., Gooch, B., Purgathofer, W. (eds.) Proceedings of the First Eurographics Conference on Computational Aesthetics in Graphics, Visualization and Imaging (Computational Aesthetics’05), pp. 29–39. Eurographics Association, Aire-la-Ville (2005). http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH05/029-039

  62. Dobashi, Y., Haga, T., Johan, H., Nishita, T.: A method for creating mosaic images using Voronoi diagrams. Eurographics Association 2002—short presentation, pp. 341–348. (2002). https://doi.org/10.2312/egs.20021036

  63. Faustino, G.M., Henrique de Figueiredo, L.: Simple adaptive mosaic effects. In: Proceedings of the XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI ‘05), pp. 315–322. IEEE Computer Society, Washington, DC (2005). https://doi.org/10.1109/SIBGRAPI.2005.46

  64. Mould, D.: A stained glass image filter. In: Proceedings of the 14th Eurographics Workshop on Rendering (EGRW ‘03), pp. 20–25. Eurographics Association, Aire-la-Ville (2003)

  65. Orchard, J., Kaplan, C.S.: Cut-out image mosaics. In: Proceedings of the 6th International Symposium on Non-photorealistic Animation and Rendering (NPAR ‘08), pp/ 79–87. ACM, New York (2008). http://dx.doi.org/10.1145/1377980.1377997

  66. Choi, Y.S., Koo, B.K., Lee, J.H.: Template based image mosaics. In: Ma, L., Rauterberg, M., Nakatsu, R. (eds.). Entertainment computing—ICEC 2007. ICEC 2007. Lecture Notes in Computer Science, vol 475–478. Springer, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74873-1_64

  67. Liu Y., Veksler, O.: Animated classic mosaics from video. In: Bebis G. et al. (eds) Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5876, pp/ 1085–1096. Springer, Berlin, Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-10520-3_104

  68. Hu, W., Chen, Z., Pan, H., Yu, Y., Grinspun, E., Wang, W.: Surface mosaic synthesis with irregular tiles. IEEE Trans. Vis. Comput. Graph. 22, 1302–1313 (2016). https://doi.org/10.1109/TVCG.2015.2498620

    Article  Google Scholar 

  69. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ‘01), p. 327–340. ACM, New York (2001). https://doi.org/10.1145/383259.383295

  70. Curtis, C.J., Anderson, S.E., Seims, J.E., Fleischer, K.W., Salesin, D.H.: Computer-generated watercolor, pp. 421–430. ACM Press/Addison-Wesley Publishing Co., New York (1997). https://doi.org/10.1145/258734.258896

  71. Faridul, H.S., Pouli, T., Chamaret, C., Stauder, J., Tremeau, A., Reinhard, E.: Survey of color mapping and its applications. The Eurographics Association ISBN: 1017-4656 (2014). https://doi.org/10.2312/egst.20141035

  72. Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. 21, 34–41 (2001). https://doi.org/10.1109/38.946629

    Article  Google Scholar 

  73. Daniel, Ruderman L., Cronin, Thomas W., Chiao, Chuan-Chin: Statistics of cone responses to natural images: implications for visual coding. J. Opt. Soc. Am. A 15(8), 2036–2045 (1998). https://doi.org/10.1364/josaa.15.002036

    Article  Google Scholar 

  74. Sýkora, D., Buriánek. J., Žára, J.: Unsupervised colorization of black-and-white cartoons. In: Spencer, S.N. (ed.) Proceedings of the 3rd International Symposium on Non-photorealistic Animation and Rendering (NPAR ‘04), pp. 121–127. ACM, New York (2004). http://dx.doi.org/10.1145/987657.987677

  75. Neumann, L. Neumann, A.: Color style transfer techniques using hue, lightness and saturation histogram matching. In: Proceedings of the First Eurographics Conference on Computational Aesthetics in Graphics, Visualization and Imaging (2005). http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH05/111-122

  76. Li, Y., Lizhuang, M., Di, W.: Fast colorization using edge and gradient constrains. In: Proceedings of the 15th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, pp 309–316 (2007)

  77. Greenfield, G.R., House, D.H.: Image recolouring induced by palette colour associations. J Winter School Comput. Graph. CAD Syst. 11(1), 3–7 (2003)

    Google Scholar 

  78. Chang, Y., Saito, S., Nakajima, M.: Example-based color transformation of image and video using basic color categories. IEEE Trans Image Process (2007). https://doi.org/10.1109/tip.2006.888347

  79. Wang, C.-M., Wang, R.-J.: Image-based color ink diffusion rendering. IEEE Trans. Vis. Comput. Graph. 13(2), 235–246 (2007). https://doi.org/10.1109/TVCG.2007.41

    Article  Google Scholar 

  80. Bae, S., Paris, S., Durand, F.: Two-scale tone management for photographic look. In: SIGGRAPH’06: ACM SIGGRAPH 2006 Papers, pp. 637–645. ACM, New York (2006). https://doi.org/10.1145/1179352.1141935

  81. Lischinski, D., Farbman, Z., Uyttendaele, M., Szeliski, R.: Interactive local adjustment of tonal values. ACM trans. Graph. 25(3), 646–653 (2006). https://doi.org/10.1145/1179352.1141936

    Article  Google Scholar 

  82. Pu, Y., Su, Y., Wei, X., Zhao, Y., Xu, D., Qian, W.: Stylized rendering of Yunnan heavy color painting. In: 2008 Second International Symposium on Intelligent Information Technology Application, Shanghai, pp. 397–401 (2008). https://doi.org/10.1109/IITA.2008.357

  83. Su, Z., Deng, D., Yang, X., Luo, X.: Color transfer based on multiscale gradient-aware decomposition and color distribution mapping. In: Proceedings of the 20th ACM International Conference on Multimedia (MM ‘12), pp. 753–756. ACM, New York (2012). https://doi.org/10.1145/2393347.2396304

  84. Yang, H., Kwon, Y., Min, K.: A Texture-based approach for hatching color photographs. In: Proceedings of the 6th International Conference on Advances in Visual Computing, Vol Part I (ISVC’10), pp. 86–95. Springer-Verlag, Berlin, Heidelberg (2010)

  85. Wang, B., Yu, Y., Wong, T.-T., Chen, C., Xu, Y.-Q.: Data-driven image color theme enhancement. ACM Trans. Graph. 29, 10 (2010). https://doi.org/10.1145/1882261.1866172

    Article  Google Scholar 

  86. Jeschke, S., Cline, D., Wonka, P.: Estimating color and texture parameters for vector graphics (2011). https://doi.org/10.1111/j.1467-8659.2011.01877.x

  87. Pouli, T., Reinhard, E.: Progressive color transfer for images of arbitrary dynamic range. Comput. Graph. 35(1), 67–80 (2011). https://doi.org/10.1016/j.cag.2010.11.003

    Article  Google Scholar 

  88. Kim, H.R., Yoo, M.-J., Kang, H., Lee, I.K.: Perceptually-based color assignment. Comput. Graph. Forum 33, 309–318 (2014). https://doi.org/10.1111/cgf.12499

    Article  Google Scholar 

  89. Lin, S., Ritchie, D., Fisher, M., Hanrahan, P.: Probabilistic color-by-numbers: suggesting pattern colorizations using factor graphs. ACM Tans. 32(37), 1–37 (2013). https://doi.org/10.1145/2461912.2461988

    Article  MATH  Google Scholar 

  90. Zhao, F., Su, Z., Liang, X., Lai, Y.K., Rosin, P.L.: Example-based image colorization using locality consistent sparse representation. IEEE Trans. Image Process. 26, 11 (2017). https://doi.org/10.1109/tip.2017.2732239

    Article  MathSciNet  MATH  Google Scholar 

  91. Okura, F., Vanhoey, K., Bousseau, A., Efros, A.A., Drettakis, G.: Unifying color and texture transfer for predictive appearance manipulation. In: Proceedings of the 26th Eurographics Symposium on Rendering (EGSR ‘15), pp. 53–63. Eurographics Association, Aire-la-Ville (2015). http://dx.doi.org/10.1111/cgf.12678

  92. Alvarez, L., Gousseau, Y., Morel, J.-M., Salgado, A.: Exploring the space of abstract textures by principles and random sampling. J Math Imaging Vis. 53, 332 (2015). https://doi.org/10.1007/s10851-015-0582-z

    Article  MathSciNet  Google Scholar 

  93. Hristova, H., Le Meur, O., Cozot, R., Bouatouch. K.: Style-aware robust color transfer. In: Proceedings of the Workshop on Computational Aesthetics (CAE ‘15), pp. 67–77. Eurographics Association, Goslar, Germany (2015)

  94. Risser, E., Wilmot, P., Barnes, C.: Stable and controllable neural texture synthesis and style transfer using histogram losses. CoRR 1701.08893. abs/1701.08893 (2017 )

  95. Hensman, P., Aizawa, K.: cGAN-based manga colorization using a single training image. In: 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), pp 72–77, Kyoto (2017). https://doi.org/10.1109/icdar.2017.295

  96. Liao, J., Yao, Y., Yuan, L., Hua, G., Kang, S.B.: Visual attribute transfer through deep image analogy. ACM Trans. Graph… 36(4), 15 (2017). https://doi.org/10.1145/3072959.3073683

    Article  Google Scholar 

  97. Elad, M., Milanfar, P.: Style transfer via texture synthesis. Trans. Image Proc. 26, 2338–2351 (2017). https://doi.org/10.1109/TIP.2017.2678168

    Article  MathSciNet  MATH  Google Scholar 

  98. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. CoRR (2015). https://doi.org/10.1167/16.12.326

  99. Yi, Z., Li, Y., Ji, S., Gong, M.: Artistic stylization of face photos based on a single exemplar. Vis Comput 33, 1443–1452 (2017). https://doi.org/10.1007/s00371-016-1290-4

    Article  Google Scholar 

  100. Zhao, H., Rosin, P.L., Lai, Y.-K.: Automatic semantic style transfer using deep convolution neural networks and soft masks. CoRR (2017)

  101. Liu, X.C., Cheng, M.M., Lai, Y.K., Rosin, P.L.: Depth-aware neural style transfer. In: Spencer, S.N. (ed.). Proceedings of the Symposium on Non-photorealistic Animation and Rendering (NPAR ‘17). ACM, New York (2017). https://doi.org/10.1145/3092919.3092924

  102. Agarwala, A.: SnakeToonz: a semi-automatic approach to creating cel animation from video. In: Proceedings of the 2nd International Symposium on Non-photorealistic Animation and Rendering (NPAR ‘02). ACM, New York (2002). http://dx.doi.org/10.1145/508530.508554

  103. Agarwala, A., Hertzmann, A., Salesin, D.H., Seitz, S.M.: Keyframe-based tracking for rotoscoping and animation. ACM Trans Graph 23, 584–591 (2004). https://doi.org/10.1145/1015706.1015764

    Article  Google Scholar 

  104. Bousseau, A., Kaplan, M., Thollot, J., Sillion, F.X.: Interactive watercolor rendering with temporal coherence and abstraction, pp. 141–149. ACM, New York (2006). https://doi.org/10.1145/1124728.1124751

  105. Bousseau, A., Neyret, F., Thollot, J., Salesin, D.: Video watercolorization using bidirectional texture advection. ACM Trans. Graph. (2007). https://doi.org/10.1145/1276377.1276507

    Article  Google Scholar 

  106. Wang, T., Collomosse, J., Slatter, D., Cheatle, P., Greig, D.: Video stylization for digital ambient displays of home movies. ACM Computers & Graphics, New York (2010). http://dx.doi.org/10.1145/1809939.1809955

  107. Kagaya, Mizuki, Brendel, William, Deng, Qingqing, Kesterson, Todd, Todorovic, Sinisa, Neill, Patrick J., Zhang, Eugene: Video painting with space-time-varying style parameters. IEEE Trans. Vis. Comput. Graph. 17(1), 74–87 (2011)

    Article  Google Scholar 

  108. Salisbury, M., Anderson, C., Lischinski, D., Salesin, D.H.: Scale-dependent reproduction of pen-and-ink illustrations, pp. 461–468. ACM, New York (1996). http://dx.doi.org/10.1145/237170.237286

  109. Song, Y.-Z., Rosin, P.L., Hall, P.M., Collomosse, J.: Arty shapes. In: Brown, P., Cunningham, D. W., Interrante, V., McCormack, J. (eds.) Proceedings of the Fourth Eurographics Conference on Computational Aesthetics in Graphics, Visualization and Imaging (Computational Aesthetics’08), pp. 65–72. Eurographics Association, Aire-la-Ville (2008). http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH08/065-072

  110. Bangham, A., Gibson, S.E., Richard, H.: The art of scale-space, vol 1 (2003). https://doi.org/10.5244/c.17.58

  111. Mould, D., Grant, K.: Stylized black and white images from photographs. In: Proceedings of the 6th International Symposium on Non-photorealistic Animation and Rendering (NPAR ‘08), pp.49–58. ACM, New York (2008). http://dx.doi.org/10.1145/1377980.1377991

  112. Zeng, K., Zhao, M., Xiong, C., Zhu, S.-C.: From image parsing to painterly rendering. ACM Trans. Graph. 29, 11 (2009). https://doi.org/10.1145/1640443.1640445

    Article  Google Scholar 

  113. Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. 21, 34–41 (2001). https://doi.org/10.1109/38.946629

    Article  Google Scholar 

  114. Zhao, M., Zhu, S.-C.: Sisley the abstract painter. In: Proceedings of the 8th International Symposium on Non-photorealistic Animation and Rendering (NPAR ‘10), pp. 99–107. ACM, New York (2010). https://doi.org/10.1145/1809939.1809951

  115. Osher, S., Rudin, L.I.: Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27, 919–940 (1990). https://doi.org/10.1137/0727053

    Article  MATH  Google Scholar 

  116. Doellner, J., Nienhaus, M.: Edge-enhancement-an algorithm for real-time non-photorealistic rendering. J. WSCG 11(1), 346–353 (2003). (ISSN 1213-6972 WSCG’2003)

    Google Scholar 

  117. Kyprianidis, J.E., Kang, H., Döllner, J.: Image and video abstraction by anisotropic kuwahara filtering. Comput. Graph. Forum 28(7), 1955–1963 (2009). https://doi.org/10.1111/j1467-8659.2009.01574.x

    Article  Google Scholar 

  118. Raskar, R., Ilie, A., Yu, J.: Image fusion for context enhancement and video surrealism. In: Spencer, S.N. (ed.). Proceedings of the 3rd International Symposium on Non-photorealistic Animation and Rendering (NPAR ‘04), pp. 85–152. ACM, New York (2004). http://dx.doi.org/10.1145/987657.987671

  119. Redmond, N., Dingliana, J.: Adaptive abstraction of 3D scenes in real-time. Eurographics (2007). https://doi.org/10.2312/egs.20071038

  120. Mould, D.: Texture-preserving abstraction. In: Proceedings of the Symposium on Non-photorealistic Animation and Rendering (NPAR ‘12), pp. 75–82. Eurographics Association, Goslar (2012)

  121. Kyprianidis, J.E.: Image and video abstraction by multi-scale anisotropic kuwahara filtering. In: Spencer, S.N. (ed.) Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Non-photorealistic Animation and Rendering (NPAR ‘11), pp. 55–64. ACM, New York (2011). https://doi.org/10.1145/2024676.2024686

  122. Kyprianidis, J.E., Semmo, A., Kang H., Döllner J.: Anisotropic kuwahara filtering with polynomial weighting functions (2010). https://doi.org/10.2312/localchapterevents/tpcg/tppcg10/025-030

  123. Chun, S., Jung, K., Kim, J.: Oil painting rendering through virtual light effect and regional analysis. In: Proceedings of the 10th International Conference on Virtual Reality Continuum and Its Applications in Industry (VRCAI ‘11), pp. 419–422. ACM, New York (2011). http://dx.doi.org/10.1145/2087756.2087833

  124. Kolliopoulos, A., Wang, J.M., Hertzmann, A.: Segmentation-based 3D artistic rendering. In: Akenine-Möller, T., Heidrich, W. (eds.) Proceedings of the 17th Eurographics Conference on Rendering Techniques (EGSR ‘06), pp. 361–370. Eurographics Association, Aire-la-Ville (2006). http://dx.doi.org/10.2312/EGWR/EGSR06/361-370

  125. Kyprianidis, J.E., Kang, H.: Image and Video abstraction by coherence-enhancing filtering. Comput. Graph. Forum. 30, 593–602 (2011). https://doi.org/10.1111/j.1467-8659.2011.01882.x

    Article  Google Scholar 

  126. Williams, S.G.D., Green, R.: Mr. painting robot. Siggraph, Computer Graphics Proceedings, pp. 83–89 (2009)

  127. Kang, Henry, Lee, Seungyong: Shape-simplifying image abstraction. Comput. Graph. Forum. 27, 1773–1780 (2008). https://doi.org/10.1111/j.1467-8659.2008.01322.x

    Article  Google Scholar 

  128. Papari, G., Petkov, N., Campisi, P.: Artistic edge and corner enhancing smoothing. Trans. Image Proc. 16(10), 2449–2462 (2007). https://doi.org/10.1109/TIP.2007.903912

    Article  MathSciNet  Google Scholar 

  129. Winnemöller, H.: XDoG: advanced image stylization with extended difference-of-gaussians. In: Spencer, S.N. (ed.) Proceedings of the ACM Siggraph/Eurographics Symposium on Non-photorealistic Animation and Rendering (NPAR ‘11), pp. 147–156. ACM, New York (2011), https://doi.org/10.1145/2024676.2024700

  130. Nagendra Swamy H.S., Pavan Kumar M.P.: An integrated filter based approach for image abstraction and stylization. In: Swamy, P., Guru, D. (eds.) Multimedia Processing, Communication and Computing Applications. Lecture Notes in Electrical Engineering, vol 213. Springer, New Delhi (2013)

  131. Kang, H., Lee, S., Chui, C.K.: Coherent line drawing. In: Proceedings of the 5th International Symposium on Non-photorealistic Animation and Rendering (NPAR ‘07), pp. 43–50. ACM, New York (2007). https://doi.org/10.1145/1274871.1274878

  132. Spicker, M., Kratt, J., Arellano, D., Deussen, O.: Depth-aware coherent line drawings. In: SIGGRAPH Asia 2015 Technical Briefs (SA ‘15). ACM, New York (2015). https://doi.org/10.1145/2820903.2820909

  133. Nagendra Swamy H.S., Pavan Kumar, M.P.: Line drawing for conveying shapes in HDR images. Int. J. Innov. Eng. Technol. (IJIET) 2(2), 353–362 (2013)

    Google Scholar 

  134. Mould, D.: Image and video abstraction using cumulative range geodesic filtering. Comput. Graph. 37, 413–430 (2013). https://doi.org/10.1016/j.cag.2013.03.002

    Article  Google Scholar 

  135. De Arruda, F.A.P.V., de Queiroz, J.E.R., Gomes, H.M.: Non-photorealistic neural-sketching. J. Braz. Comput. Soc. 18, 237 (2012). https://doi.org/10.1007/s13173-012-0061-y

    Article  Google Scholar 

  136. Tsai, H.C., Lee, Y.H., Lee, R.R., Chu, H.K.: User-guided line abstraction using coherence and structure analysis. Comput. Vis. Media 3(2), 177–188 (2017). https://doi.org/10.1007/s41095-016-0076-y

    Article  Google Scholar 

  137. Zhang, S., Li, X., Hu, S., Martin, R.R.: Online video stream abstraction and stylization. IEEE Trans. Multimedia 13(6), 1286–1294 (2011). https://doi.org/10.1109/tmm.2011.2165052

    Article  Google Scholar 

  138. Son, M., Lee, Y., Kang, H., Lee, S.: Art-photographic detail enhancement. Comput. Graph. Forum. 33(2), 391–400 (2014). https://doi.org/10.1111/cgf.12298

    Article  Google Scholar 

  139. Cho, H., Lee, H., Kang, H., Lee, S.: Bilateral texture filtering. ACM Trans Graph (TOG) 33(4), 128 (2014). https://doi.org/10.1145/2601097.2601188

    Article  Google Scholar 

  140. Shahcheraghi, Z., See, J., Halin, A.A.: Image abstraction using anisotropic diffusion symmetric nearest neighbor filter. In Ooi, W., Snoek, C., Tan, H., Ho, C.-K., Huet, B., Ngo, C.-W. (eds.) Proceedings of the 15th Pacific-Rim Conference on Advances in Multimedia Information Processing—PCM 2014—Volume 8879, Vol. 8879, pp. 343–352. Springer-Verlag, New York (2014). https://doi.org/10.1007/978-3-319-13168-9_38

  141. Li, J., Mould, D.: Image warping for a painterly effect. In: Proceedings of the Workshop on Computational Aesthetics (CAE ‘15), pp. 131–140. Eurographics Association, Goslar (2015)

  142. Jeon, J., Lee, H., Kang, H., Lee, S.: Scale-aware structure-preserving texture filtering. Comput. Graph. Forum 35, 77–86 (2016). https://doi.org/10.1111/cgf.13005

    Article  Google Scholar 

  143. Lee, H., Jeon, J., Kim, J., Lee, S.: Structure-texture decomposition of images with interval gradient. Comput. Graph. Forum 36, 262–274 (2017). https://doi.org/10.1111/cgf.12875

    Article  Google Scholar 

  144. Jing, S.; Liu, Y., Xu, K.: A second order variation based bilateral filter for image stylization and texture removal. In: 2016 International Conference on Virtual Reality and Visualization (ICVRV), Hangzhou, pp. 242–249 (2016). https://doi.org/10.1109/icvrv.2016.47

  145. Deshpande, A., Raman, S.: Adaptive artistic stylization of images. In: Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP ‘16). ACM, New York (2016). https://doi.org/10.1145/3009977.3009985

  146. Sadreazami, H., Asif, A., Mohammadi, A.: Iterative graph-based filtering for image abstraction and stylization. IEEE Trans. Circ. Syst. II Express Briefs 65(2), 251–255 (2018). https://doi.org/10.1109/tcsii2017.2669866

    Article  Google Scholar 

  147. Azami, R., Mould, D.: Detail and color enhancement in photo stylization. In: Spencer, S.N. (ed.) Proceedings of the Symposium on Computational Aesthetics (CAE ‘17). ACM, New York (2017). https://doi.org/10.1145/3092912.3092917

  148. Shakeri, H., Nixon, M., DiPaola, S.: Saliency-based artistic abstraction with deep learning and regression trees. J. Imaging Sci. Technol. 61(6), 060402-1–060402-9 (2017)

    Google Scholar 

  149. Wu, Yi-Ta, Yeh, Jeng-Sheng, Wu, Fu-Che, Chuang, Yung-Yu.: Tangent-based binary image abstraction. J. Imaging. 3, 16 (2017). https://doi.org/10.3390/jimaging3020016

    Article  Google Scholar 

  150. Mould, D., Rosin, P.L.: A benchmark image set for evaluating stylization. In: Proceedings of the Joint Symposium on Computational Aesthetics and Sketch Based Interfaces and Modeling and Non-photorealistic Animation and Rendering (Expresive ‘16), pp. 11–20. Eurographics Association, Aire-la-Ville (2016)

  151. Mould, D., Rosin, P.L.: Developing and applying a benchmark for evaluating image stylization. Comput. Graph. 67, 58–76 (2017). https://doi.org/10.1016/j.cag.2017.05.025

    Article  Google Scholar 

  152. Rosin, P.L., Mould, D., Berger, I., Collomosse, J., Lai, Y.K., Li, C., Li, H., Shamir, A., Wand, M., Wang, T., Winnemöller, H.: Benchmarking non-photorealistic rendering of portraits. In: Spencer, S.N. (ed.) Proceedings of the Symposium on Non-photorealistic Animation and Rendering (NPAR ‘17). ACM, New York (2017). https://doi.org/10.1145/3092919.3092921

  153. Hasler, D., Suesstrunk, S.E.: Measuring colorfulness in natural images. Proc. SPIE Int. Soc. Opt. Eng. 5007, 87–95 (2003). https://doi.org/10.1117/12.477378

    Article  Google Scholar 

  154. Machado, P., Cardoso, A.: Computing aethetics. In: Moreira de Oliveira, F. (ed.) Proceedings of the 14th Brazilian Symposium on Artificial Intelligence: Advances in Artificial Intelligence (SBIA ‘98), pp. 219–228. Springer-Verlag, London (1998)

  155. Matković, K., Neumann, L., Neumann, A., Psik, T., Purgathofer, W.: Global contrast factor—a new approach to image contrast. In: Neumann, L., Sbert, M., Gooch, B., Purgathofer, W. (eds.) Proceedings of the First Eurographics Conference on Computational Aesthetics in Graphics, Visualization and Imaging (Computational Aesthetics’05), pp. 159–167. Eurographics Association, Aire-la-Ville (2005). http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH05/159-167

  156. Bahrami, K., Kot, A.C.: A fast approach for no-reference image sharpness assessment based on maximum local variation. IEEE Signal Proc. Lett. 21(6), 751–755 (2014). https://doi.org/10.1109/lsp.2014.2314487

    Article  Google Scholar 

  157. Smith, S.M., Brady, J.M.: Susan—a new approach to low level image processing. Int. J. Comput. Vis. 23(1), 45–78 (1997). https://doi.org/10.1023/A:1007963824710

    Article  Google Scholar 

  158. Immerkær, J.: Fast noise variance estimation. Comput. Vis. Image Underst. 64, 300–302 (1996). https://doi.org/10.1006/cviu.1996.0060

    Article  Google Scholar 

  159. Yusra, A., Al-Najjar, Y., Soong, D.C.: Comparison of image quality assessment: PSNR, HVS, SSIM, UIQI. Int. J. Sci. Eng. Res. 3(8), 1 (2012). (ISSN 2229-5518)

    Google Scholar 

  160. Walpole, R.E., Myers, R.H., Myers, S.L., Ye, K.: Probability and statistics for engineers and scientists, 9th edn. Prentice Hall, New York (2010)

    MATH  Google Scholar 

  161. Tietjen, C., Isenberg, T., Preim, B.: Combining silhouettes, shading, and volume rendering for surgery education and planning. In: Proc. of Euro-Vis, pp. 303–310. Eurographics Association (2005). https://doi.org/10.2312/vissym/eurovis05/303-310

  162. Besançon, L., Semmo, A., Biau, D., Frachet, B., Pineau, V., Sariali, E.H., Taouachi, R., Isenberg, T., Dragicevic, P.: Reducing affective responses to surgical images through color manipulation and stylization. In: Proceedings of the Joint Symposium on Computational Aesthetics and Sketch-Based Interfaces and Modeling and Non-photorealistic Animation and Rendering (Expressive ‘18). ACM, New York (2018). https://doi.org/10.1145/3229147.3229158

  163. Yang, Q.: Recursive bilateral filtering. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds) Computer Vision—ECCV 2012. ECCV 2012. Lecture Notes in Computer Science, vol 7572. Springer, Berlin (2012)

  164. Orzan, A., Bousseau, A., Barla, P., Thollot, J.: Structure-preserving manipulation of photographs. In: Proceedings of the 5th International Symposium on Non-photorealistic Animation and Rendering (NPAR ‘07), pp. 130–110. ACM, New York (2007). https://doi.org/10.1145/1274871.1274888

  165. Secord A.: Weighted voronoi stippling. In: proceedings of the 2nd International Symposium on Non-photorealistic Animation and Rendering, pp. 37–43. NPAR’02. ACM, New York (2002). http://dx.doi.org/10.1145/508530.508537

  166. Christoudias, C., Georgescu, B., Meer, P.: Synergism in low level vision. Proc. 16th Int’l. Conf.Pattern Recogn. 4, 150–155 (2002). https://doi.org/10.1109/icpr.2002.1047421

    Article  Google Scholar 

  167. Orzan, A., Bousseau, A., Winnemöller, H., Barla, P., Thollot, J., Salesin, D.: Diffusion curves: a vector representation for smooth-shaded images. ACM Trans. Graph. 27, 56 (2008). https://doi.org/10.1145/2483852.2483873

    Article  Google Scholar 

  168. Gatys, L.A., Ecker, A.S., Bethge, M.: Texture synthesis using convolution neural networks. In: Cortes, C., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the 28th International Conference on Neural Information Processing Systems—Volume 1 (NIPS’15), vol. 1, pp. 262–270. MIT Press, Cambridge (2015)

    Google Scholar 

  169. Ulyanov, D., Lebedev, V., Vedaldi, A., Lempitsky, V.: Texture networks: feed-forward synthesis of textures and stylized images. CoRR (2016). arXiv:1603.03417

  170. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. CoRR (2017). arXiv:1703.06868

  171. Dumoulin, V., Shlens, J., Kudlur, M.: A learned representation for artistic style. In: International Conference on Learning Representations (ICLR-2017). arxiv.org/abs/1610.07629

  172. van Noord, N., Postma, E.: A learned representation of artist-specific colourisation. In: IEEE International Conference on Computer Vision Workshops (ICCVW), Venice, pp. 2907–2915 (2017). https://doi.org/10.1109/ICCVW.2017.343

  173. Wang, X., Oxholm, G., Zhang, D., Wang, Y.-F.: Multimodal transfer: a hierarchical deep convolution neural network for fast artistic style transfer. Proc. IEEE Confer. Comput. Vis. Pattern Recogn. 2017, 7178–7186 (2017)

    Google Scholar 

  174. Luan, F., Paris, S., Shechtman, E., Bala, K.: Deep photo style transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, (2017). arXiv:1703.07511

  175. Winnemoeller, H., Kyprianidis, J.E., Olsen, S.C.: XDoG: an eXtended difference-of-gaussians compendium including advanced image stylization. Comput. Graph. 36, 740–753 (2012). https://doi.org/10.1016/j.cag.2012.03.004

    Article  Google Scholar 

Download references

Acknowledgements

During our work involving setting up of benchmark data set, many noteworthy images were scrutinized. We the authors offer our heartfelt thanks for the following authors and resource persons for their courtesy in publishing the images pertaining to their work. (1) Dr Jan Eric Kypriandis and associates. (2) Dr Henry Kang and associates. (3) Ar.Yeshaswini Rondamath, Asst.Professor, BMSSA, Bangalore. (4) Prof. Vishwas CGM, Asst. Professor. JNNCE, Shivamogga. (5) Dr Nirmala Shivananda. Prof and Head, Dept. of CSE. JNNCE Shivamogga. Our thanks are due to Dr David Mould for the valuable suggestion in assessing the image property.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Pavan Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.P.P., Poornima, B., Nagendraswamy, H.S. et al. A comprehensive survey on non-photorealistic rendering and benchmark developments for image abstraction and stylization. Iran J Comput Sci 2, 131–165 (2019). https://doi.org/10.1007/s42044-019-00034-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42044-019-00034-1

Keywords

Navigation