Skip to main content
Log in

Multiple-attribute decision-making based on picture fuzzy Archimedean power Maclaurin symmetric mean operators

  • Original Paper
  • Published:
Granular Computing Aims and scope Submit manuscript

Abstract

In this paper, a novel multiple-attribute decision-making method based on a set of Archimedean power Maclaurin symmetric mean operators of picture fuzzy numbers is proposed. The Maclaurin symmetric mean operator, power average operator, and operational rules based on Archimedean T-norm and T-conorm are introduced into picture fuzzy environment to construct the aggregation operators. The formal definitions of the aggregation operators are presented. Their general and specific expressions are established. The properties and special cases of the aggregation operators are, respectively, explored and discussed. Using the presented aggregation operators, a method for solving the multiple-attribute decision-making problems based on picture fuzzy numbers is designed. The method is illustrated through example and experiments and validated by comparisons. The results of the comparisons show that the proposed method is feasible and effective that can provide the generality and flexibility in aggregation of values of attributes and consideration of interactions among attributes and the capability to lower the negative effect of biased attribute values on the result of aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The Java implementation code of all quantitative comparison methods and related data used to support the findings of this study have been deposited in the GitHub repository (https://github.com/YuchuChingQin/MADMAOsOfPFNs).

References

  • Ai Z, Xu Z (2018) Multiple Definite Integrals of Intuitionistic Fuzzy Calculus and Isomorphic Mappings. IEEE Trans Fuzzy Syst 26(2):670–680

    MathSciNet  Google Scholar 

  • Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96

    MATH  Google Scholar 

  • Bustince H, Barrenechea E, Pagola M, Fernandez J, Xu Z, Bedregal B, Montero J, Hagras H, Herrera F, De Baets B (2016) A historical account of types of fuzzy sets and their relationships. IEEE Trans Fuzzy Syst 24(1):179–194

    Google Scholar 

  • Castillo O, Cervantes L, Melin P, Pedrycz W (2019) A new approach to control of multivariable systems through a hierarchical aggregation of fuzzy controllers. Granular Comput 4(1):1–13

    Google Scholar 

  • Chen SM, Adam SI (2017) Adaptive fuzzy interpolation based on general representative values of polygonal fuzzy sets and the shift and modification techniques. Inf Sci 414:147–157

    MATH  Google Scholar 

  • Chen SM, Chang CH (2016) Fuzzy multiattribute decision making based on transformation techniques of intuitionistic fuzzy values and intuitionistic fuzzy geometric averaging operators. Inf Sci 352:133–149

    MATH  Google Scholar 

  • Chen SM, Chen SW (2014) Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships. IEEE Trans Cybern 45(3):391–403

    Google Scholar 

  • Chen SM, Niou SJ (2011) Fuzzy multiple attributes group decision-making based on fuzzy preference relations. Expert Syst Appl 38(4):3865–3872

    Google Scholar 

  • Chen SM, Ko YK, Chang YC, Pan JS (2009) Weighted fuzzy interpolative reasoning based on weighted increment transformation and weighted ratio transformation techniques. IEEE Trans Fuzzy Syst 17(6):1412–1427

    Google Scholar 

  • Chen SM, Chu HP, Sheu TW (2012) TAIEX forecasting using fuzzy time series and automatically generated weights of multiple factors. IEEE Trans Syst Man Cybern Part A Syst Hum 42(6):1485–1495

    Google Scholar 

  • Chen SM, Cheng SH, Lan TC (2016a) Multicriteria decision making based on the TOPSIS method and similarity measures between intuitionistic fuzzy values. Inf Sci 367:279–295

    Google Scholar 

  • Chen SM, Cheng SH, Chiou CH (2016b) Fuzzy multiattribute group decision making based on intuitionistic fuzzy sets and evidential reasoning methodology. Inf Fusion 27:215–227

    Google Scholar 

  • Cuong BC (2014) Picture fuzzy sets. J Comput Sci Cybern 30(4):409–420

    Google Scholar 

  • Dutta P (2019) Multi-criteria decision making under uncertainty via the operations of generalized intuitionistic fuzzy numbers. Granular Comput. https://doi.org/10.1007/s41066-019-00189-z

    Article  Google Scholar 

  • Dutta P, Saikia B (2019) Arithmetic operations on normal semi elliptic intuitionistic fuzzy numbers and their application in decision-making. Granular Comput. https://doi.org/10.1007/s41066-019-00175-5

    Article  Google Scholar 

  • Garg H (2017a) Novel intuitionistic fuzzy decision making method based on an improved operation laws and its application. Eng Appl Artif Intell 60:164–174

    Google Scholar 

  • Garg H (2017b) Some picture fuzzy aggregation operators and their applications to multicriteria decision-making. Arab J Sci Eng 42(12):5275–5290

    MathSciNet  MATH  Google Scholar 

  • Garg H, Kumar K (2018) An advanced study on the similarity measures of intuitionistic fuzzy sets based on the set pair analysis theory and their application in decision making. Soft Comput 22(15):4959–4970

    MATH  Google Scholar 

  • Garg H, Kumar K (2019) Improved possibility degree method for ranking intuitionistic fuzzy numbers and their application in multiattribute decision-making. Granul Comput 4(2):237–247

    Google Scholar 

  • Hinde CJ, Patching RS, McCoy SA (2007) Inconsistent Intuitionistic Fuzzy Sets and Mass Assignment. In: Atanassov KT, Baczyński M, Drewniak J, Kacprzyk J, Krawczak M, Szmidt E, Wygralak M, Zadrożny S (Eds.) Developments in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics, vol. I: Foundations, Warsaw: SRI PAS/IBS PAN, pp 133 − 153

  • Jamkhaneh EB, Garg H (2018) Some new operations over the generalized intuitionistic fuzzy sets and their application to decision-making process. Granul Comput 3(2):111–122

    Google Scholar 

  • Jana C, Senapati T, Pal M, Yager RR (2019) Picture fuzzy Dombi aggregation operators: Application to MADM process. Applied Soft Computing 74:99–109

    Google Scholar 

  • Ju Y, Ju D, Gonzalez EDS, Giannakis M, Wang A (2019) Study of site selection of electric vehicle charging station based on extended GRP method under picture fuzzy environment. Comput Ind Eng 135:1271–1285

    Google Scholar 

  • Khalil AM, Li SG, Garg H, Li H, Ma S (2019) New operations on interval-valued picture fuzzy set, interval-valued picture fuzzy soft set and their applications. IEEE Access 7:51236–51253

    Google Scholar 

  • Klement EP, Mesiar R, Pap E (2000) Triangular Norms. Springer, Dordrecht

    MATH  Google Scholar 

  • Kumar K, Garg H (2018) Connection number of set pair analysis based TOPSIS method on intuitionistic fuzzy sets and their application to decision making. Appl Intell 48(8):2112–2119

    Google Scholar 

  • Lei Q, Xu Z (2016) Chain and substitution rules of intuitionistic fuzzy calculus. IEEE Trans Fuzzy Syst 24(3):519–529

    Google Scholar 

  • Lei Q, Xu Z (2017) A unification of intuitionistic fuzzy calculus theories based on subtraction derivatives and division derivatives. IEEE Trans Fuzzy Syst 25(5):1023–1040

    Google Scholar 

  • Liang W, Zhao G, Luo S (2018) An integrated EDAS-ELECTRE method with picture fuzzy information for cleaner production evaluation in gold mines. IEEE Access 6:65747–65759

    Google Scholar 

  • Liao H, Xu Z (2014) Priorities of intuitionistic fuzzy preference relation based on multiplicative consistency. IEEE Trans Fuzzy Syst 22(6):1669–1681

    Google Scholar 

  • Liao H, Xu Z, Zeng XJ, Merigó JM (2015) Framework of group decision making with intuitionistic fuzzy preference information. IEEE Trans Fuzzy Syst 23(4):1211–1227

    Google Scholar 

  • Liu P, Chen SM (2017) Group decision making based on Heronian aggregation operators of intuitionistic fuzzy numbers. IEEE Trans Cybern 47(9):2514–2530

    Google Scholar 

  • Liu P, Chen SM, Wang P (2018) Multiple-attribute group decision-making based on q-rung orthopair fuzzy power maclaurin symmetric mean operators. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/tsmc.2018.2852948

    Article  Google Scholar 

  • Liu P, Chen SM, Wang Y (2020) Multiattribute group decision making based on intuitionistic fuzzy partitioned Maclaurin symmetric mean operators. Inf Sci 512:830–854

    MathSciNet  MATH  Google Scholar 

  • Liu P, Tang G (2018) Some intuitionistic fuzzy prioritized interactive einstein choquet operators and their application in decision making. IEEE Access 6:72357–72371

    Google Scholar 

  • Liu P, Liu X (2017) Multiattribute group decision making methods based on linguistic intuitionistic fuzzy power Bonferroni mean operators. Complexity 2017:3571459

    MathSciNet  MATH  Google Scholar 

  • Liu P, Liu J (2018) Some q-rung orthopai fuzzy Bonferroni mean operators and their application to multi-attribute group decision making. Int J Intell Syst 33(2):315–347

    Google Scholar 

  • Liu P, Wang P (2018) Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making. Int J Intell Syst 33(2):259–280

    Google Scholar 

  • Liu P, Wang P (2019) Multiple-attribute decision making based on Archimedean Bonferroni operators of q-rung orthopair fuzzy numbers. IEEE Trans Fuzzy Syst 27(5):834–848

    Google Scholar 

  • Maclaurin C (1729) A second letter to Martin Folkes, Esq.; Concerning the roots of equations, with the demonstration of other rules in algebra. Philos Trans R Soc Lond 36(1):59–96

    Google Scholar 

  • Mahmood T, Ullah K, Khan Q, Jan N (2019) An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets. Neural Comput Appl 31(11):7041–7053

    Google Scholar 

  • Qin Y, Qi Q, Scott PJ, Jiang X (2019a) Multi-criteria group decision making based on Archimedean power partitioned Muirhead mean operators of q-rung orthopair fuzzy numbers. PLoS One 14(9):e0221759

    Google Scholar 

  • Qin Y, Cui X, Huang M, Zhong Y, Tang Z, Shi P (2019b) Archimedean muirhead aggregation operators of q-rung orthopair fuzzy numbers for multicriteria group decision making. Complexity 2019:3103741

    MATH  Google Scholar 

  • Qin Y, Cui X, Huang M, Zhong Y, Tang Z, Shi P (2020a) Linguistic interval-valued intuitionistic fuzzy archimedean power muirhead mean operators for multiattribute group decision-making. Complexity 2020:2373762

    MATH  Google Scholar 

  • Qin Y, Qi Q, Shi P, Scott PJ, Jiang X (2020b) Linguistic interval-valued intuitionistic fuzzy Archimedean prioritised aggregation operators for multi-criteria decision making. J Intell Fuzzy Syst 38(4):4643–4666

    Google Scholar 

  • Qin Y, Qi Q, Scott PJ, Jiang X (2020c) Multiple criteria decision making based on weighted Archimedean power partitioned Bonferroni aggregation operators of generalised orthopair membership grades. Soft Comput 24(16):12329–12355

    Google Scholar 

  • Rani P, Jain D, Hooda DS (2019) Extension of intuitionistic fuzzy TODIM technique for multi-criteria decision making method based on shapley weighted divergence measure. Granul Comput 4(3):407–420

    Google Scholar 

  • Seikh MR, Mandal U (2019) Intuitionistic fuzzy Dombi aggregation operators and their application to multiple attribute decision-making. Granul Comput. https://doi.org/10.1007/s41066-019-00209-y

    Article  Google Scholar 

  • Singh P (2015) Correlation coefficients for picture fuzzy sets. J Intell Fuzzy Syst 28(2):591–604

    MathSciNet  MATH  Google Scholar 

  • Son LH (2016) Generalized picture distance measure and applications to picture fuzzy clustering. Appl Soft Comput 46:284–295

    Google Scholar 

  • Song Y, Fu Q, Wang YF, Wang X (2019) Divergence-based cross entropy and uncertainty measures of Atanassov’s intuitionistic fuzzy sets with their application in decision making. Appl Soft Comput 84:105703

    Google Scholar 

  • Tan A, Shi S, Wu WZ, Li J, Pedrycz W (2020) Granularity and entropy of intuitionistic fuzzy information and their applications. IEEE Trans Cybern. https://doi.org/10.1109/tcyb.2020.2973379

    Article  Google Scholar 

  • Teng F, Liu Z, Liu P (2018) Some power Maclaurin symmetric mean aggregation operators based on Pythagorean fuzzy linguistic numbers and their application to group decision making. Int J Intell Syst 33(9):1949–1985

    Google Scholar 

  • Thong PH (2016) A novel automatic picture fuzzy clustering method based on particle swarm optimization and picture composite cardinality. Knowl-Based Syst 109:48–60

    Google Scholar 

  • Wang JQ, Zhang HY (2013) Multicriteria decision-making approach based on Atanassov’s intuitionistic fuzzy sets with incomplete certain information on weights. IEEE Trans Fuzzy Syst 21(3):510–515

    Google Scholar 

  • Wang L, Zhang H, Wang J, Li L (2018a) Picture fuzzy normalized projection-based VIKOR method for the risk evaluation of construction project. Appl Soft Comput 64:216–226

    Google Scholar 

  • Wang L, Peng J, Wang J (2018b) A multi-criteria decision-making framework for risk ranking of energy performance contracting project under picture fuzzy environment. J Clean Prod 191:105–118

    Google Scholar 

  • Wei G (2017) Picture fuzzy aggregation operators and their application to multiple attribute decision making. J Intell Fuzzy Syst 33(2):713–724

    MATH  Google Scholar 

  • Wei G (2018) Picture fuzzy Hamacher aggregation operators and their application to multiple attribute decision making. Fundamenta Informaticae 157(3):271–320

    MathSciNet  MATH  Google Scholar 

  • Wei G, Lu M, Gao H (2018a) Picture fuzzy Heronian mean aggregation operators in multiple attribute decision making. Int J Knowl-Based Intell Eng Syst 22(3):167–175

    Google Scholar 

  • Wei G, Alsaadi FE, Hayat T, Alsaedi A (2018b) Picture 2-tuple linguistic aggregation operators in multiple attribute decision making. Soft Comput 22(3):989–1002

    MATH  Google Scholar 

  • Xia M, Xu Z, Zhu B (2012) Some issues on intuitionistic fuzzy aggregation operators based on Archimedean t-conorm and t-norm. Knowl-Based Syst 31:78–88

    Google Scholar 

  • Xu Y, Shang X, Wang J, Zhang R, Li W, Xing Y (2019) A method to multi-attribute decision making with picture fuzzy information based on Muirhead mean. J Intell Fuzzy Syst 36(4):3833–3849

    Google Scholar 

  • Xu Z, Yager RR (2011) Intuitionistic fuzzy Bonferroni means. IEEE Trans Syst Man Cybern-Part B Cybern 41(2):568–578

    Google Scholar 

  • Yager RR (2001) The power average operator. IEEE Trans Syst Man Cybern-Part A Syst Hum 31(6):724–731

    Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    MATH  Google Scholar 

  • Zeng S, Chen SM, Kuo LW (2019) Multiattribute decision making based on novel score function of intuitionistic fuzzy values and modified VIKOR method. Inf Sci 488:76–92

    Google Scholar 

  • Zhang FW, Huang WW, Sun J, Liu ZD, Zhu YH, Li KT, Xu SH, Li Q (2019) Generalized fuzzy additive operators on intuitionistic fuzzy sets and interval-valued intuitionistic fuzzy sets and their application. IEEE Access 7:45734–45743

    Google Scholar 

  • Zhang H, Zhang R, Huang H, Wang J (2018) Some picture fuzzy Dombi Heronian mean operators with their application to multi-attribute decision-making. Symmetry 10(11):593

    MATH  Google Scholar 

  • Zhang Z, Pedrycz W (2017a) Models of mathematical programming for intuitionistic multiplicative preference relations. IEEE Trans Fuzzy Syst 25(4):945–957

    Google Scholar 

  • Zhang Z, Pedrycz W (2017b) Intuitionistic multiplicative group analytic hierarchy process and its use in multicriteria group decision-making. IEEE Trans Cybern 48(7):1950–1962

    Google Scholar 

  • Zhang Z, Pedrycz W (2018) Goal programming approaches to managing consistency and consensus for intuitionistic multiplicative preference relations in group decision making. IEEE Trans Fuzzy Syst 26(6):3261–3275

    Google Scholar 

  • Zhang Z, Chen SM, Wang C (2020) Group decision making with incomplete intuitionistic multiplicative preference relations. Inf Sci 516:560–571

    MathSciNet  MATH  Google Scholar 

  • Zhong Y, Guo X, Gao H, Qin Y, Huang M, Luo X (2019a) A new multi-criteria decision-making method based on Pythagorean hesitant fuzzy Archimedean Muirhead mean operators. J Intell Fuzzy Syst 37(4):5551–5571

    Google Scholar 

  • Zhong Y, Gao H, Guo X, Qin Y, Huang M, Luo X (2019b) Dombi power partitioned Heronian mean operators of q-rung orthopair fuzzy numbers for multiple attribute group decision making. PLoS One 14(10):e0222007

    Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of PR China (No. 51765012 and No. 61562016) and the Key Laboratory Project of Guangxi (No. GIIP1805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meifa Huang.

Ethics declarations

Conflict of interest

Yuchu Qin declares that he has no conflict of interest. Xiaolan Cui declares that she has no conflict of interest. Meifa Huang declares that he has no conflict of interest. Yanru Zhong declares that she has no conflict of interest. Zhemin Tang declares that he has no conflict of interest. Peizhi Shi declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendixes

Appendixes

1.1 A. Proof of Theorem 1

Proof

  1. 1

    The following equations are successively derived from the operational rules in Eqs. (1), (2), (3), and (4)

    $$\begin{aligned}(n\omega_{{i_{h} }} )\alpha_{{i_{h} }} & = \left\langle {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right), \, \varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\varphi (\eta_{{i_{h} }} )} \right), \, \varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\varphi (\nu_{{i_{h} }} )} \right)} \right\rangle , \\ \mathop \otimes \limits_{h = 1}^{k} \left( {(n\omega_{{i_{h} }} )\alpha_{{i_{h} }} } \right) & = \left\langle {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right), \, \psi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\psi \left( {\varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\varphi (\eta_{{i_{h} }} )} \right)} \right)} } \right), \, \psi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\psi \left( {\varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\varphi (\nu_{{i_{h} }} )} \right)} \right)} } \right)} \right\rangle , \\ \mathop \oplus \limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} \mathop \otimes \limits_{h = 1}^{k} \left( {(n\omega_{{i_{h} }} )\alpha_{{i_{h} }} } \right) & = \left\langle {\psi^{ - 1} \left( {\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} } \right),} \right. \\ & \quad \varphi^{ - 1} \left( {\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\varphi \left( {\psi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\psi \left( {\varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\varphi (\eta_{{i_{h} }} )} \right)} \right)} } \right)} \right)} } \right), \\ & \left. { \quad \varphi^{ - 1} \left( {\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\varphi \left( {\psi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\psi \left( {\varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\varphi (\nu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} } \right)} \right\rangle , \\ \frac{1}{{C_{n}^{k} }}\mathop \oplus \limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} \mathop \otimes \limits_{h = 1}^{k} \left( {(n\omega_{{i_{h} }} )\alpha_{{i_{h} }} } \right) & = \left\langle {\psi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} } \right)} \right., \\ & \quad \varphi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\varphi \left( {\psi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\psi \left( {\varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\varphi (\eta_{{i_{h} }} )} \right)} \right)} } \right)} \right)} } \right), \\ & \left. { \quad \varphi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\varphi \left( {\psi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\psi \left( {\varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\varphi (\nu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} } \right)} \right\rangle , \\ \left( {\frac{1}{{C_{n}^{k} }}\mathop \oplus \limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} \mathop \otimes \limits_{h = 1}^{k} \left( {(n\omega_{{i_{h} }} )\alpha_{{i_{h} }} } \right)} \right)^{1/k} & = \left\langle {\varphi^{ - 1} \left( {\frac{1}{k}\varphi \left( {\psi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} } \right)} \right)} \right),} \right. \\ & \quad \psi^{ - 1} \left( {\frac{1}{k}\psi \left( {\varphi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\varphi \left( {\psi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\psi \left( {\varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\varphi (\eta_{{i_{h} }} )} \right)} \right)} } \right)} \right)} } \right)} \right)} \right), \\ & \quad \left. {\psi^{ - 1} \left( {\frac{1}{k}\psi \left( {\varphi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\varphi \left( {\psi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\psi \left( {\varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\varphi (\nu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} } \right)} \right)} \right)} \right\rangle . \\ \end{aligned}$$
  2. 2

    The proof of “PFAPMSM(k)(α1, α2, ..., αn) is a PFN” is equivalent to the proof of “0 ≤ μ ≤ 1, 0 ≤ η ≤ 1, 0 ≤ ν ≤ 1, and 0 ≤ μ + η + ν ≤ 1”. The following is the proof of “0 ≤ μ ≤ 1”:

    1. (i)

      According to the conditions 0 ≤ μih ≤ 1, φ(t) and φ−1(t) are monotonically decreasing, and ψ(t) and ψ−1(t) are monotonically increasing, the following inequalities are successively derived

      $$\begin{aligned} (n\omega_{{i_{h} }} )\psi (0) & \le (n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} ) \le (n\omega_{{i_{h} }} )\psi (1), \\ \psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (0)} \right) & \le \psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right) \le \psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (1)} \right), \\ \sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (0)} \right)} \right)} & \ge \sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} \ge \sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (1)} \right)} \right)} , \\ \varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (0)} \right)} \right)} } \right) & \le \varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right) \le \varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (1)} \right)} \right)} } \right), \\ \frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (0)} \right)} \right)} } \right)} \right)} & \le \frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} \\ & \quad \le\,\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (1)} \right)} \right)} } \right)} \right)} . \\ \end{aligned}$$

      Since

      $$\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\sum\limits_{h = 1}^{k} {(n\omega_{{i_{h} }} ) = n\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\left( {\omega_{{i_{1} }} + \omega_{{i_{2} }} + \ldots + \omega_{{i_{k} }} } \right)} } } = n\frac{1}{n} = 1.$$

      The following inequalities are successively obtained

      $$\begin{aligned} \psi \left( {\varphi^{ - 1} \left( {k\varphi (0)} \right)} \right) \le \frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} \le \psi \left( {\varphi^{ - 1} \left( {k\varphi (1)} \right)} \right), \hfill \\ \varphi^{ - 1} \left( {k\varphi (0)} \right) \le \psi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} } \right) \le \varphi^{ - 1} \left( {k\varphi (1)} \right), \hfill \\ \varphi (0) \ge \frac{1}{k}\varphi \left( {\psi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} } \right)} \right) \ge \varphi (1), \hfill \\ 0 \le \varphi^{ - 1} \left( {\frac{1}{k}\varphi \left( {\psi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} } \right)} \right)} \right) \le 1. \hfill \\ \end{aligned}$$

      That is 0 ≤ μ ≤ 1. “0 ≤ η ≤ 1” and “0 ≤ ν ≤ 1” can be proved in a similar way.

    2. (ii)

      The following is the proof of “0 ≤ μ + η + ν ≤ 1”:

      Since 0 ≤ μ ≤ 1, 0 ≤ η ≤ 1, and 0 ≤ ν ≤ 1, it is obtained that 0 ≤ μ + η + ν ≤ 3. According to the definition of a PFN in Def. 1, it is further obtained that μih + ηih + νih ≤ 1 and μih ≤ 1 – (ηih + νih).

      According to the conditions φ(t) and φ−1(t) are monotonically decreasing, ψ(t) and ψ−1(t) are monotonically increasing, ψ(1 − t) = φ(t), ψ−1(t) = 1 − φ−1(t), φ(1 − t) = ψ(t), and φ−1(t) = 1 − ψ−1(t), the following inequalities are successively derived

      $$\begin{aligned} (n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} ) \le (n\omega_{{i_{h} }} )\psi \left( {1 - (\eta_{{i_{h} }} + \nu_{{i_{h} }} )} \right), \hfill \\ (n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} ) \le (n\omega_{{i_{h} }} )\varphi (\eta_{{i_{h} }} + \nu_{{i_{h} }} ), \hfill \\ \varphi (\eta_{{i_{h} }} + \nu_{{i_{h} }} ) \le 2\varphi (\eta_{{i_{h} }} + \nu_{{i_{h} }} ) \le \varphi (\eta_{{i_{h} }} ) + \varphi (\nu_{{i_{h} }} ), \hfill \\ (n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} ) \le (n\omega_{{i_{h} }} )\varphi (\eta_{{i_{h} }} + \nu_{{i_{h} }} ) \le (n\omega_{{i_{h} }} )\left( {\varphi (\eta_{{i_{h} }} ) + \varphi (\nu_{{i_{h} }} )} \right), \hfill \\ \psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right) \le \psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\left( {\varphi (\eta_{{i_{h} }} ) + \varphi (\nu_{{i_{h} }} )} \right)} \right), \hfill \\ \psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right) \le 1 - \varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\left( {\varphi (\eta_{{i_{h} }} ) + \varphi (\nu_{{i_{h} }} )} \right)} \right), \hfill \\ \sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} \ge \sum\limits_{h = 1}^{k} {\varphi \left( {1 - \varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\left( {\varphi (\eta_{{i_{h} }} ) + \varphi (\nu_{{i_{h} }} )} \right)} \right)} \right)} , \hfill \\ \sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} \ge \sum\limits_{h = 1}^{k} {\psi \left( {\varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\left( {\varphi (\eta_{{i_{h} }} ) + \varphi (\nu_{{i_{h} }} )} \right)} \right)} \right)} , \hfill \\ \varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right) \le \varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\psi \left( {\varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\left( {\varphi (\eta_{{i_{h} }} ) + \varphi (\nu_{{i_{h} }} )} \right)} \right)} \right)} } \right), \hfill \\ \varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right) \le 1 - \psi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\psi \left( {\varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\left( {\varphi (\eta_{{i_{h} }} ) + \varphi (\nu_{{i_{h} }} )} \right)} \right)} \right)} } \right), \hfill \\ \frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} \le \frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {1 - \psi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\psi \left( {\varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\left( {\varphi (\eta_{{i_{h} }} ) + \varphi (\nu_{{i_{h} }} )} \right)} \right)} \right)} } \right)} \right)} , \hfill \\ \frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} \le \frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\varphi \left( {\psi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\psi \left( {\varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\left( {\varphi (\eta_{{i_{h} }} ) + \varphi (\nu_{{i_{h} }} )} \right)} \right)} \right)} } \right)} \right)} , \hfill \\ \psi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} } \right) \le \psi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\varphi \left( {\psi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\psi \left( {\varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\left( {\varphi (\eta_{{i_{h} }} ) + \varphi (\nu_{{i_{h} }} )} \right)} \right)} \right)} } \right)} \right)} } \right), \hfill \\ \psi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} } \right) \hfill \\ \le 1 - \varphi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\varphi \left( {\psi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\psi \left( {\varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\left( {\varphi (\eta_{{i_{h} }} ) + \varphi (\nu_{{i_{h} }} )} \right)} \right)} \right)} } \right)} \right)} } \right), \hfill \\ \frac{1}{k}\varphi \left( {\psi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} } \right)} \right) \hfill \\ \ge \frac{1}{k}\varphi \left( {1 - \varphi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\varphi \left( {\psi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\psi \left( {\varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\left( {\varphi (\eta_{{i_{h} }} ) + \varphi (\nu_{{i_{h} }} )} \right)} \right)} \right)} } \right)} \right)} } \right)} \right), \hfill \\ \frac{1}{k}\varphi \left( {\psi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} } \right)} \right) \hfill \\ \ge \frac{1}{k}\psi \left( {\varphi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\varphi \left( {\psi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\psi \left( {\varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\left( {\varphi (\eta_{{i_{h} }} ) + \varphi (\nu_{{i_{h} }} )} \right)} \right)} \right)} } \right)} \right)} } \right)} \right), \hfill \\ \varphi^{ - 1} \left( {\frac{1}{k}\varphi \left( {\psi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} } \right)} \right)} \right) \hfill \\ \le \varphi^{ - 1} \left( {\frac{1}{k}\psi \left( {\varphi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\varphi \left( {\psi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\psi \left( {\varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\left( {\varphi (\eta_{{i_{h} }} ) + \varphi (\nu_{{i_{h} }} )} \right)} \right)} \right)} } \right)} \right)} } \right)} \right)} \right), \hfill \\ \varphi^{ - 1} \left( {\frac{1}{k}\varphi \left( {\psi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} } \right)} \right)} \right) \hfill \\ \le 1 - \psi^{ - 1} \left( {\frac{1}{k}\psi \left( {\varphi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\varphi \left( {\psi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\psi \left( {\varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\left( {\varphi (\eta_{{i_{h} }} ) + \varphi (\nu_{{i_{h} }} )} \right)} \right)} \right)} } \right)} \right)} } \right)} \right)} \right) \hfill \\ \le 1 - \left( \begin{aligned} \psi^{ - 1} \left( {\frac{1}{k}\psi \left( {\varphi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\varphi \left( {\psi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\psi \left( {\varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\left( {\varphi (\eta_{{i_{h} }} )} \right)} \right)} \right)} } \right)} \right)} } \right)} \right)} \right) + \hfill \\ \psi^{ - 1} \left( {\frac{1}{k}\psi \left( {\varphi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\varphi \left( {\psi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\psi \left( {\varphi^{ - 1} \left( {(n\omega_{{i_{h} }} )\left( {\varphi (\nu_{{i_{h} }} )} \right)} \right)} \right)} } \right)} \right)} } \right)} \right)} \right) \hfill \\ \end{aligned} \right). \hfill \\ \end{aligned}$$

      That is, μ + η + ν ≤ 1.

      Since 0 ≤ μ + η + ν ≤ 3 and μ + η + ν ≤ 1 have been proved, 0 ≤ μ + η + ν ≤ 1 can be obtained.

1.2 B. Proof of Theorem 2

Proof

Since αi = α = < μα, ηα, να > for all i = 1, 2, ..., n, d(αi, αj) = 0 for all j = 1, 2, ..., n and j ≠ i. Based on the expression of T(αp) in Def. 9, it is obtained that

$$n\omega_{{i_{h} }} = n{{\left( {\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\sum\limits_{h = 1}^{k} {\left( {1 + T(\alpha_{{i_{h} }} )} \right)} } } \right)} \mathord{\left/ {\vphantom {{\left( {\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\sum\limits_{h = 1}^{k} {\left( {1 + T(\alpha_{{i_{h} }} )} \right)} } } \right)} {\sum\limits_{j = 1}^{n} {\left( {1 + T(\alpha_{j} )} \right)} }}} \right. \kern-0pt} {\sum\limits_{j = 1}^{n} {\left( {1 + T(\alpha_{j} )} \right)} }} = n{{\left( {1 + (n - 1)} \right)} \mathord{\left/ {\vphantom {{\left( {1 + (n - 1)} \right)} {\left( {n\left( {1 + (n - 1)} \right)} \right)}}} \right. \kern-0pt} {\left( {n\left( {1 + (n - 1)} \right)} \right)}} = 1.$$

Based on this and Theorem 1, it can be obtained that

$$\mu = \varphi^{ - 1} \left( {\frac{1}{k}\varphi \left( {\psi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi (\mu_{{i_{h} }} )} } \right)} \right)} } \right)} \right)} \right).$$

Since μi = μα, then

$$\sum\limits_{h = 1}^{k} {\varphi (\mu_{{i_{h} }} )} = \sum\limits_{h = 1}^{k} {\varphi (\mu_{\alpha } )} = k\varphi (\mu_{\alpha } )\;{\text{and }}\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi (\mu_{{i_{h} }} )} } \right) = \varphi^{ - 1} \left( {k\varphi (\mu_{\alpha } )} \right).$$

The following equations are successively obtained

$$\begin{aligned} \frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi (\mu_{{i_{h} }} )} } \right)} \right)} = \frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {k\varphi (\mu_{\alpha } )} \right)} \right)} = \psi \left( {\varphi^{ - 1} \left( {k\varphi (\mu_{\alpha } )} \right)} \right), \hfill \\ \psi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi (\mu_{{i_{h} }} )} } \right)} \right)} } \right) = \psi^{ - 1} \left( {\psi \left( {\varphi^{ - 1} \left( {k\varphi (\mu_{\alpha } )} \right)} \right)} \right) = \varphi^{ - 1} \left( {k\varphi (\mu_{\alpha } )} \right), \hfill \\ \frac{1}{k}\varphi \left( {\psi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi (\mu_{{i_{h} }} )} } \right)} \right)} } \right)} \right) = \frac{1}{k}\varphi \left( {\varphi^{ - 1} \left( {k\varphi (\mu_{\alpha } )} \right)} \right) = \varphi (\mu_{\alpha } ), \hfill \\ \varphi^{ - 1} \left( {\frac{1}{k}\varphi \left( {\psi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi (\mu_{{i_{h} }} )} } \right)} \right)} } \right)} \right)} \right) = \varphi^{ - 1} \left( {\varphi (\mu_{\alpha } )} \right) = \mu_{\alpha } , \hfill \\ \varphi^{ - 1} \left( {\frac{1}{k}\varphi \left( {\psi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} } \right)} \right)} \right) = \mu_{\alpha } . \hfill \\ \end{aligned}$$

This is μ = μα. Similarly, it can be proved that η = ηα and ν = να. Thus, PFAPMSM(k)(α1, α2, ..., αn) = < μα, ηα, να > .

1.3 C. Proof of Theorem 3

Proof

It can be derived from the definition of the PFAPMSM operator that

$$\left( {\frac{1}{{C_{n}^{k} }}\mathop \oplus \limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} \mathop \otimes \limits_{h = 1}^{k} \left( {\frac{{n\left( {1 + T(\beta_{{i_{h} }} )} \right)}}{{\sum\limits_{j = 1}^{n} {\left( {1 + T(\beta_{j} )} \right)} }}\beta_{{i_{h} }} } \right)} \right)^{1/k} = \left( {\frac{1}{{C_{n}^{k} }}\mathop \oplus \limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} \mathop \otimes \limits_{h = 1}^{k} \left( {\frac{{n\left( {1 + T(\alpha_{{i_{h} }} )} \right)}}{{\sum\limits_{j = 1}^{n} {\left( {1 + T(\alpha_{j} )} \right)} }}\alpha_{{i_{h} }} } \right)} \right)^{1/k} .$$

According to Def. 9, it is obtained that PFAPMSM(k)(β1, β2, ..., βn) = PFAPMSM(k)(α1, α2, ..., αn).

1.4 D. Proof of Theorem 4

Proof

Based on Theorem 2, it can be obtained that PFAPMSM(k)(α, α, ..., α) = αα, PFAPMSM(k)(α+, α+, ..., α+) = α+, and ih = 1 for both PFAPMSM(k)(α, α, ..., α) and PFAPMSM(k)(α+, α+, ..., α+). According to the conditions μ ≤ μih ≤ μ+, φ(t) and φ−1(t) are monotonically decreasing, and ψ(t) and ψ−1(t) are monotonically increasing, the following inequalities are successively derived

$$\begin{aligned} \psi (\mu^{ - } ) \le (n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} ) \le \psi (\mu^{ + } ), \hfill \\ \mu^{ - } \le \psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right) \le \mu^{ + } , \hfill \\ k\varphi (\mu^{ - } ) \ge \sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} \ge k\varphi (\mu^{ + } ), \hfill \\ \varphi^{ - 1} \left( {k\varphi (\mu^{ - } )} \right) \le \varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right) \le \varphi^{ - 1} \left( {k\varphi (\mu^{ + } )} \right), \hfill \\ \psi \left( {\varphi^{ - 1} \left( {k\varphi (\mu^{ - } )} \right)} \right) \le \frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} \le \psi \left( {\varphi^{ - 1} \left( {k\varphi (\mu^{ + } )} \right)} \right), \hfill \\ \varphi^{ - 1} \left( {k\varphi (\mu^{ - } )} \right) \le \psi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} } \right) \le \varphi^{ - 1} \left( {k\varphi (\mu^{ + } )} \right), \hfill \\ \varphi (\mu^{ - } ) \ge \frac{1}{k}\varphi \left( {\psi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} } \right)} \right) \ge \varphi (\mu^{ + } ), \hfill \\ \mu^{ - } \le \varphi^{ - 1} \left( {\frac{1}{k}\varphi \left( {\psi^{ - 1} \left( {\frac{1}{{C_{n}^{k} }}\sum\limits_{{1 \le i_{1} < \ldots < i_{k} \le n}} {\psi \left( {\varphi^{ - 1} \left( {\sum\limits_{h = 1}^{k} {\varphi \left( {\psi^{ - 1} \left( {(n\omega_{{i_{h} }} )\psi (\mu_{{i_{h} }} )} \right)} \right)} } \right)} \right)} } \right)} \right)} \right) \le \mu^{ + } . \hfill \\ \end{aligned}$$

That is μ ≤ μ ≤ μ+. Similarly, it can be proved that η ≥ η ≥ η+ and ν ≥ ν ≥ ν+.

According to Def. 2, it is obtained that

PFAPMSM(k)(α, α, ..., α) ≤ PFAPMSM(k)(α1, α2, ..., αn) ≤ PFAPMSM(k)(α+, α+, ..., α+)

Therefore, α ≤ PFAPMSM(k)(α1, α2, ..., αn) ≤ α+.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Cui, X., Huang, M. et al. Multiple-attribute decision-making based on picture fuzzy Archimedean power Maclaurin symmetric mean operators. Granul. Comput. 6, 737–761 (2021). https://doi.org/10.1007/s41066-020-00228-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41066-020-00228-0

Keywords

Navigation