Skip to main content

Advertisement

Log in

Robust functional observer for stabilising uncertain fuzzy systems with time-delay

  • Original Paper
  • Published:
Granular Computing Aims and scope Submit manuscript

Abstract

This paper presents a new technique for stabilising a Takagi–Sugeno (T-S) fuzzy system with time-delay and uncertainty. A robust fuzzy functional observer is employed to design a controller when the system states are not measurable. The model uncertainty is norm bounded, and the time-delay is time-varying but bounded. The parallel distributed compensation method is applied for defining the fuzzy functional observer to design this controller. The proposed procedure reduces the observer order to the dimension of the control input. Improved stability conditions are provided for the observer compared with the existing results of functional observer-based stabilisation of T-S fuzzy models. Lyapunov–Krasovskii functionals are used to construct delay-dependent stability conditions as linear matrix inequalities. The solution of these inequalities is used for calculating the observer parameters. The sensitivity of the estimation error to the model uncertainty is reduced by minimising the \(L_2\) gain. The new design method developed is illustrated and verified using two examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Boukal Y, Zasadzinski M, Darouach M, Radhy N (2016) Robust functional observer design for uncertain fractional-order time-varying delay systems. In: American control conference (ACC). IEEE, Boston, pp 2741–2746

  • Chen B, Liu X (2005) Delay-dependent robust \(H_{\infty }\) control for T-S fuzzy systems with time delay. IEEE Trans Fuzzy Syst 13(4):544–556

    Article  Google Scholar 

  • Chen SM, Chang YC (2011) Weighted fuzzy rule interpolation based on GA-based weight-learning techniques. IEEE Trans Fuzzy Syst 19(4):729–744

    Article  MathSciNet  Google Scholar 

  • Chen SM, Munif A, Chen GS, Chuan HL, Kuo BC (2012) Fuzzy risk analysis based on ranking generalized fuzzy numbers with different left heights and right heights. Expert Syst Appl 39(7):6320–6334

    Article  Google Scholar 

  • Darouach M (2000) Existence and design of functional observers for linear systems. IEEE Trans Autom Control 45(5):940–943

    Article  MathSciNet  Google Scholar 

  • Darouach M (2001) Linear functional observers for systems with delays in state variables. IEEE Trans Autom Control 46(3):491–496

    Article  MathSciNet  Google Scholar 

  • Fadali MS (2005) Fuzzy functional observers for dynamic TSK systems. In: The 14th IEEE International conference on fuzzy systems. IEEE, Reno, pp 389–394

  • Feng G (2006) A survey on analysis and design of model-based fuzzy control systems. IEEE Trans Fuzzy Syst 14(5):676–697

    Article  Google Scholar 

  • Guerra TM, Vermeiren L (2004) LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi–Sugeno’s form. Automatica 40(5):823–829

    Article  MathSciNet  Google Scholar 

  • Ha QP, Trinh H, Nguyen HT, Tuan HD (2003) Dynamic output feedback sliding-mode control using pole placement and linear functional observers. IEEE Trans Ind Electron 50(5):1030–1037

    Article  Google Scholar 

  • Islam SI, Lim CC, Shi P (2018a) Functional observer based controller for stabilizing Takagi–Sugeno fuzzy systems with time-delays. J Frankl Inst 355(8):3619–3640

    Article  MathSciNet  Google Scholar 

  • Islam SI, Lim CC, Shi P (2018b) Functional observer-based fuzzy controller design for continuous nonlinear systems. Int J Syst Sci 49(5):1047–1060

    Article  MathSciNet  Google Scholar 

  • Jiang B, Karimi HR, Kao Y, Gao C (2018) A novel robust fuzzy integral sliding mode control for nonlinear semi-markovian jump T-S fuzzy systems. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2018.2838552

    Article  Google Scholar 

  • Krokavec D, Filasov A (2012) A reduced-order TS fuzzy observer scheme with application to actuator faults reconstruction. Math Probl Eng 2012:1–25

    MathSciNet  Google Scholar 

  • Krokavec D, Filasov A (2014) On reduced-order fuzzy observer for one class of bilinear Takagi–Sugeno systems. In: 2014 European control conference (ECC). IEEE, Strasbourg, pp 981–986

  • Lai YF, Chen MY, Chiang HS (2018) Constructing the lie detection system with fuzzy reasoning approach. Granul Comput 3(2):169–176

    Article  Google Scholar 

  • Li J, Niemann D, Wang HO, Tanaka K (1999) Parallel distributed compensation for Takagi–Sugeno fuzzy models: multiobjective controller design. In: American control conference, vol 3. IEEE, San Diego, pp 1832–1836

  • Liu H, Zhang L (2018) Fuzzy rule-based systems for recognition-intensive classification in granular computing context. Granul Comput. https://doi.org/10.1007/s41066-018-0076-7

    Article  Google Scholar 

  • Liu X, Zhang Q (2003) New approaches to \(H_{\infty }\) controller designs based on fuzzy observers for T-S fuzzy systems via LMI. Automatica 39(9):1571–1582

    Article  MathSciNet  Google Scholar 

  • Ma XJ, Sun ZQ (2001) Analysis and design of fuzzy reduced-dimensional observer and fuzzy functional observer. Fuzzy Sets Syst 120:35–63

    Article  MathSciNet  Google Scholar 

  • Mohajerpoor R, Abdi H, Nahavandi S (2016) A new algorithm to design minimal multi-functional observers for linear systems. Asian J Control 18(3):842–857

    Article  MathSciNet  Google Scholar 

  • Nguang SK, Shi P (2003) \(H_{\infty }\) fuzzy output feedback control design for nonlinear systems: an LMI approach. IEEE Trans Fuzzy Syst 11(3):331–340

    Article  Google Scholar 

  • Rao CR, Mitra SK (1971) Generalized inverse of matrices and its applications. Wiley, New York

    MATH  Google Scholar 

  • Shi P, Boukas EK, Shi Y, Agarwal RK (2003) Optimal guaranteed cost control of uncertain discrete time-delay systems. J Comput Appl Math 157(2):435–451

    Article  MathSciNet  Google Scholar 

  • Shojaei F, Arefi MM, Khayatian A, Karimi HR (2018) Observer-based fuzzy adaptive dynamic surface control of uncertain nonstrict feedback systems with unknown control direction and unknown dead-zone. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2018.2852725

    Article  Google Scholar 

  • Sun C, Wang F, He X (2017) Robust fault-tolerant control for fuzzy delay systems with unmeasurable premise variables via uncertain system approach. Int J Innov Comput Inf Control 13(3):823–846

    Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern SMC–15(1):116–132

    Article  Google Scholar 

  • Tanaka K, Sugeno M (1992) Stability analysis and design of fuzzy control systems. Fuzzy Sets Syst 45(2):135–156

    Article  MathSciNet  Google Scholar 

  • Tanaka K, Ikeda T, Wang HO (1998) Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Trans Fuzzy Syst 6(2):250–265

    Article  Google Scholar 

  • Teh PS, Trinh H (2012) Partial state and unknown input estimation for time-delay systems. Int J Syst Sci 43(4):748–763

    Article  MathSciNet  Google Scholar 

  • Tran HM, Trinh H, Nam PT (2015) Functional observer-based fault detection of time-delay systems via an LMI approach. In: Australian control conference (AUCC). IEEE, Gold Coast, pp 194–199

  • Trinh H, Fernando T (2007) On the existence and design of functional observers for linear systems. In: International conference on mechatronics and automation. IEEE, Harbin, pp 1974–1979

  • Wang G, Li Y, Li X (2017) Approximation performance of the nonlinear hybrid fuzzy system based on variable universe. Granul Comput 2(2):73–84. https://doi.org/10.1007/s41066-016-0028-z

    Article  Google Scholar 

  • Wang H, Chen SM (2008) Evaluating students’ answerscripts using fuzzy numbers associated with degrees of confidence. IEEE Trans Fuzzy Syst 16(2):403–415

    Article  Google Scholar 

  • Wang HO, Tanaka K, Grifln M (1995) Parallel distributed compensation of nonlinear systems by Takagi–Sugeno fuzzy model. In: IEEE international conference on fuzzy systems, vol 2. IEEE, Yokohama, pp 531–538

  • Wang HO, Tanaka K, Griffin MF (1996) An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans Fuzzy Syst 4(1):10

    Article  Google Scholar 

  • Wang Y, Karimi HR, Lam H, Shen H (2018) An improved result on exponential stabilization of sampled-data fuzzy systems. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2018.2852281

    Article  Google Scholar 

  • Wu ZG, Shi P, Su H, Chu J (2012) Reliable \(H_\infty\) control for discrete-time fuzzy systems with infinite-distributed delay. IEEE Trans Fuzzy Syst 20(1):22–31

    Article  Google Scholar 

  • Yordanova S, Yankov V, Jain L (2017) MIMO fuzzy logic supervisor-based adaptive control using the example of coupled-tanks levels control. Int J Innov Comput Inf Control 13(2):453–470

    Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  Google Scholar 

  • Zhang J, Shi P, Qiu J, Nguang SK (2015) A novel observer-based output feedback controller design for discrete-time fuzzy systems. IEEE Trans Fuzzy Syst 23(1):7

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Nature Science Foundation of China (61773131, U1509217), and the Australian Research Council (DP170102644).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Imranul Islam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Lemma 1

By applying PDC controller \(u=\sum _{j=1}^r \mu _j(\xi (t)) K_j x(t)\), the dynamics of closed-loop system (2) can be expressed as

$$\begin{aligned}&\sum _{i=1}^r \sum _{j=1}^r \mu _i ( \xi (t)) \mu _j ( \xi (t)) \Bigg \{ (A_i + \varDelta A_i + B_i K_j) x(t) \nonumber \\&\quad + (A_{di} + \varDelta A_{di} ) x(t-\tau (t)) \Bigg \}. \end{aligned}$$
(23)

Consider a Lyapunov–Krasovskii functional for the stability analysis of closed-loop system (23)

$$\begin{aligned} \begin{aligned} V(t)&= x^T(t) P_1 x(t) + \int _{t-\tau (t)}^{t} x^T(s) P_2 x(s) \mathrm{d}s \\&\quad +\int _{-\tau _\mathrm{M}}^{0} \int _{t+\theta }^t x^T(s) P_3 x(s) \mathrm{d}s \mathrm{d}\theta \\&\quad + \int _{-\tau _\mathrm{M}}^{-\tau _\mathrm{m}} \int _{t+\theta }^t x^T(s) P_4 x(s) \mathrm{d}s \mathrm{d}\theta . \end{aligned} \end{aligned}$$

Taking derivative along the state dynamics and applying the assumption \({\dot{\tau }}(t) \le \rho\), we can obtain

$$\begin{aligned} \begin{aligned} {\dot{V}}(t)&= 2 x^T(t) P_1 {\dot{x}}(t) + x^T(t) P_2 x(t) \\&\quad - (1-{\dot{\tau }}(t))x^T(t-\tau (t)) P_2 x(t-\tau (t)) \\&\quad + {\dot{x}}^T(t) ( \tau _\mathrm{M} P_3 + (\tau _\mathrm{M}- \tau _\mathrm{m}) P_4 ) {\dot{x}}(t) \\&\quad - \int _{t - \tau _\mathrm{M}}^t {\dot{x}}^T(s) P_3 {\dot{x}}(s) \mathrm{d}s \\&\quad - \int _{t - \tau _\mathrm{M}}^{t-\tau _\mathrm{m}} {\dot{x}}^T(s) P_4 {\dot{x}}(s) \mathrm{d}s \\&\le 2 x^T(t) P_1 {\dot{x}}(t) + x^T(t) P_2 x(t)\\&\quad - (1-\rho )x^T(t-\tau (t)) P_2 x(t-\tau (t)) \\&\quad + {\dot{x}}^T(t) ( \tau _\mathrm{M} P_3 + (\tau _\mathrm{M} - \tau _\mathrm{m}) P_4 ) {\dot{x}}(t). \end{aligned} \end{aligned}$$
(24)

By (23) and the assumption of (3), it can be shown that

$$\begin{aligned} \begin{array}{ll} & {\dot{x}}^T(t) ( \tau _\mathrm{M} P_3 + (\tau _\mathrm{M} - \tau _\mathrm{m}) P_4 ) {\dot{x}}(t) \\ & \quad = \displaystyle \sum _{i=1}^r \sum _{j=1}^r \mu _i ( \xi (t)) \mu _j ( \xi (t)) \left\{ {\dot{x}}^T(t) \varLambda \begin{bmatrix}A_i + B_iK_j & A_{di}\end{bmatrix} {\bar{x}}(t) \right. \\ & \left. \quad \quad +{\dot{x}}^T(t) \begin{bmatrix}\varLambda R_i & \varLambda R_{di} \end{bmatrix} \begin{bmatrix}U_i(t)S_i & 0 \\ 0 & U_{di}(t)S_{di} \end{bmatrix} {\bar{x}}(t) -\tau _\mathrm{m} {\dot{x}}^T(t) P_4 {\dot{x}}(t) \right\} \\ & \quad \le \displaystyle \sum _{i=1}^r \sum _{j=1}^r \mu _i ( \xi (t)) \mu _j ( \xi (t)) \left\{ {\dot{x}}^T(t) \varLambda \begin{bmatrix}A_i + B_iK_j & A_{di}\end{bmatrix} {\bar{x}}(t) \right. \\ & \quad \quad + {\dot{x}}^T(t) \begin{bmatrix}\varLambda R_i & \varLambda R_{di} \end{bmatrix} \begin{bmatrix}\varLambda R_i & \varLambda R_{di} \end{bmatrix}^T {\dot{x}}(t) +{\bar{x}}^T(t) \begin{bmatrix}S_i^T S_i & 0 \\ 0 & S_{di}^T S_{di} \end{bmatrix} {\bar{x}}(t) \\ & \left. \quad \quad -\tau _\mathrm{m} {\dot{x}}^T(t) P_4 {\dot{x}}(t) \right\} {,} \end{array} \end{aligned}$$
(25)

where \({\bar{x}}^T(t) =\begin{bmatrix}x^T(t)&x^T(t-\tau (t)) \end{bmatrix}\) and \(\varLambda = \tau _\mathrm{M}(P_3 + P_4)\). It can also be shown that

$$\begin{aligned} \begin{aligned}&2 x^T(t) P_1 {\dot{x}}(t) \\&\quad \le \sum _{i=1}^r \sum _{j=1}^r \mu _i ( \xi (t)) \mu _j ( \xi (t)) {\bar{x}}^T(t) \left\{ \begin{bmatrix} P_1(A_i +B_iK_j) + (A_i + B_iK_j)^TP_1&P_1 A_{di} \\ \star&0 \end{bmatrix} \right. \\&\qquad \left. +\begin{bmatrix}P_1R_i&P_1 R_{di} \\ 0&0\end{bmatrix} \begin{bmatrix}(P_1R_i)^T&0\\ (P_1 R_{di})^T&0\end{bmatrix} + \begin{bmatrix}S_i^TS_i&0 \\ 0&S_{di}^TS_{di}\end{bmatrix} \right\} {\bar{x}}(t){.} \end{aligned} \end{aligned}$$
(26)

Therefore, using (24), (25) and (26) we get

$$\begin{aligned} \begin{aligned} {\dot{V}}(t)&\le \sum _{i=1}^r \sum _{j=1}^r \mu _i ( \xi (t)) \mu _j ( \xi (t)) \eta ^T(t) \left( \begin{bmatrix} \begin{matrix}P_2 +P_1A_i + A_i^TP_1 \\ + P_1B_iK_j +K_j^TB_i^TP_1\end{matrix}&P_1A_{di}&\frac{1}{2}(A_i + B_iK_j)^T \varLambda \\ \star&-(1-\rho )P_2&\frac{1}{2}A_{di}^T \varLambda \\ \star&\star&-\tau _\mathrm{m} P_4\end{bmatrix} \right. \\&\quad \left. +2 \begin{bmatrix}S_i^T S_i&0&0 \\ 0&S_{di}^T S_{di}&0 \\ 0&0&0\end{bmatrix} +\begin{bmatrix}P_1R_i&P_1 R_{di}&0&0\\ 0&0&0&0 \\0&0&\varLambda R_i&\varLambda R_{di}\end{bmatrix} \begin{bmatrix}(P_1R_i)^T&0&0 \\ (P_1 R_{di})^T&0&0 \\ 0&0&R_i^T \varLambda \\ 0&0&R_{di}^T \varLambda \end{bmatrix} \right) \eta (t), \end{aligned} \end{aligned}$$

where \(\eta ^T(t) =\begin{bmatrix}x^T(t)&x^T(t-\tau (t))&{\dot{x}}^T(t) \end{bmatrix}\). As a consequence, an asymptotic stability condition of the fuzzy system can be given as

$$\begin{aligned} \begin{aligned}&\begin{bmatrix} \begin{matrix}P_2 +P_1A_i + A_i^TP_1 \\ + P_1B_iK_j +K_j^TB_i^TP_1\end{matrix}&P_1A_{di}&\frac{1}{2}(A_i + B_iK_j)^T \varLambda \\ \star&-(1-\rho )P_2&\frac{1}{2}A_{di}^T \varLambda \\ \star&\star&-\tau _\mathrm{m} P_4\end{bmatrix} \\&\quad +2 \begin{bmatrix}S_i^T S_i&0&0 \\ 0&S_{di}^T S_{di}&0 \\ 0&0&0\end{bmatrix}&\\&\quad +\begin{bmatrix}P_1R_i&P_1 R_{di}&0&0\\ 0&0&0&0 \\0&0&\varLambda R_i&\varLambda R_{di}\end{bmatrix} \begin{bmatrix}(P_1R_i)^T&0&0 \\ (P_1 R_{di})^T&0&0 \\ 0&0&R_i^T \varLambda \\ 0&0&R_{di}^T \varLambda \end{bmatrix}<0.&\end{aligned}\end{aligned}$$
(27)

By the Schur complement, (27) can be expressed as

$$\begin{aligned} \begin{bmatrix} \begin{matrix}P_2 +P_1A_i + A_i^TP_1 \\ + P_1B_iK_j +K_j^TB_i^TP_1\end{matrix}&P_1A_{di}&\frac{1}{2}(A_i^T + K_j^TB_i^T)\varLambda&P_1R_i&P_{1}R_{di}&0&0&S_i^T&0 \\ \star&-(1-\rho ) \bar{P_2}&\frac{1}{2} A_{di}^T \varLambda&0&0&0&0&0&S_{di}^T \\ \star&\star&-\tau _\mathrm{m} P_4&0&0&\varLambda R_i&\varLambda R_{di}&0&0 \\ \star&\star&\star&-I&0&0&0&0&0 \\ \star&\star&\star&\star&-I&0&0&0&0 \\ \star&\star&\star&\star&\star&-I&0&0&0 \\ \star&\star&\star&\star&\star&\star&-I&0&0 \\ \star&\star&\star&\star&\star&\star&\star&-\frac{1}{2}I&0 \\ \star&\star&\star&\star&\star&\star&\star&\star&-\frac{1}{2}I \\ \end{bmatrix} < 0. \end{aligned}$$
(28)

Considering \(P_3={\bar{\sigma }}_1 P_1\) and \(P_4 = {\bar{\sigma }}_2 P_1\), and pre-multiplying and post-multiplying (28) by block-diagonal matrix

$$\begin{aligned} \text {diag}(\begin{matrix}P_1^{-1}&P_1^{-1}&P_1^{-1}&I&I&I&I&I&I\end{matrix}), \end{aligned}$$

we obtain

$$\begin{aligned} \begin{bmatrix} \begin{matrix}{\bar{P}}_2 +A_i{\bar{P}}_1 \\ + {\bar{P}}_1A_i^T + B_i {\bar{Y}}_j \\ +{\bar{Y}}_j^TB_i^T\end{matrix}&A_{di} {\bar{P}}_1&\frac{1}{2}\kappa ( {\bar{P}}_1A_i^T + {\bar{Y}}_j^TB_i^T)&R_i&R_{di}&0&0&{\bar{P}}_1S_i^T&0 \\ \star&-(1-\rho ) \bar{P_2}&\frac{1}{2}\kappa {\bar{P}}_1 A_{di}^T&0&0&0&0&0&{\bar{P}}_1S_{di}^T \\ \star&\star&-\tau _\mathrm{m} \bar{\sigma _2} {\bar{P}}_1&0&0&\kappa R_i&\kappa R_{di}&0&0 \\ \star&\star&\star&-I&0&0&0&0&0 \\ \star&\star&\star&\star&-I&0&0&0&0 \\ \star&\star&\star&\star&\star&-I&0&0&0 \\ \star&\star&\star&\star&\star&\star&-I&0&0 \\ \star&\star&\star&\star&\star&\star&\star&-\frac{1}{2}I&0 \\ \star&\star&\star&\star&\star&\star&\star&\star&-\frac{1}{2}I \\ \end{bmatrix} < 0, \end{aligned}$$

where \({\bar{P}}_1 = P_1^{-1}\), \(\bar{P_2}=\bar{P_1} P_2 \bar{P_1}\), \({\bar{Y}}_j= K_j\bar{P_1}\), \(\kappa =\tau _\mathrm{M} ({\bar{\sigma }}_1 + {\bar{\sigma }}_2)\) with some given scalars \({\bar{\sigma }}_1\) and \({\bar{\sigma }}_2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, S.I., Shi, P. & Lim, CC. Robust functional observer for stabilising uncertain fuzzy systems with time-delay. Granul. Comput. 5, 55–69 (2020). https://doi.org/10.1007/s41066-018-0138-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41066-018-0138-x

Keywords

Navigation