Skip to main content

Advertisement

Log in

Spatial Downscaling of Snow Water Equivalent Using Machine Learning Methods Over the Zayandehroud River Basin, Iran

  • Original Article
  • Published:
PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science Aims and scope Submit manuscript

Abstract

Snow cover is an informative indicator of climate change and surface hydrological cycles. Despite its essential accurate dynamic measurement (i.e., accumulation, erosion, and runoff), it is poorly known, particularly in mountainous regions. Since passive microwave sensors can contribute to obtaining information about snowpack volume, microwave brightness temperatures (BT) have long been used to assess spatiotemporal variations in snow water equivalent (SWE). However, SWE is greatly influenced by geographic location, terrain parameters/covers, and BT differences, and thus, the low spatial resolution of existing SWE products (i.e., the coarse resolution of AMSR-based products) leads to less satisfactory results, especially in regions with complex terrain conditions, strong seasonal transitions and, great spatiotemporal heterogeneity. A novel multifactor SWE downscaling algorithm based on the support vector regression (SVR) technique has been developed in this study for the Zayandehroud River basin. Thereby, passive microwave BT, location (latitude and longitude), terrain parameters (i.e., elevation, slope, and aspect), and vegetation cover serve as model input data. Evaluation of downscaled SWE estimates against ground-based observations demonstrated that when moving into higher spatial resolution, not only was there no significant decrease in accuracy, but a 4% increase was observed. In addition, this study suggests that integrating passive microwave remote sensing data with other auxiliary data can lead to a more efficient and effective algorithm for retrieving SWE with appropriate spatial resolution over various scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arnfield AJ (2006) Micro and mesoclimatology. Prog Phys Geogr 30(5):677–689

    Article  Google Scholar 

  • Bales RC, Molotch NP, Painter TH, Dettinger MD, Rice R, Dozier J (2006) Mountain hydrology of the western United States. Water Resour Res 42:W08432. https://doi.org/10.1029/2005WR004387

    Article  Google Scholar 

  • Barry R, Gan TY (2011) Global cryosphere, past, present and future. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bi YB, Xie HJ, Huang CL, Ke CQ (2015) Snow cover variations and controlling factors at Upper Heihe River Basin Northwestern China. Remote Sens 7:6741–6762

    Article  Google Scholar 

  • Cai S, Li D, Durand M, Margulis SA (2017) Examination of the impacts of vegetation on the correlation between snow water equivalent and passive microwave brightness temperature. Remote Sens Environ 193:244–256

    Article  Google Scholar 

  • Carro-Calvo L, Casanova-Mateo C, Sanz-Justo J, Casanova-Roque JL, Salcedo-Sanz S (2017) Efficient prediction of total column ozone based on support vector regression algorithms, numerical models and Suomi-satellite data. Atmósfera 30(1):1–10

    Article  Google Scholar 

  • Chakrabarti S, Judge J, Bongiovanni T, Rangarajan A, Ranka S (2016) Disaggregation of remotely sensed soil moisture in heterogeneous landscapes using holistic structure-based models. IEEE J Geosci Remote 54:4629–4641. https://doi.org/10.1109/TGRS.2016.2547389

    Article  Google Scholar 

  • Chakrabarti S, Judge J, Rangarajan A, Ranka S (2017) Utilizing self-regularized regressive models to downscale microwave brightness temperatures for agricultural land covers in theSMAPVEX-12 Region. IEEE J Sel Top Appl 10:478–488. https://doi.org/10.1109/JSTARS.2016.2637927

    Article  Google Scholar 

  • Chang S, Shi JC, Jiang LM, Zhang LX, Yang H (2009) Improved snow depth retrieval algorithm in China area using passive microwave remote sensing data. In: Proceedings of 2009 IEEE International Geoscience and Remote Sensing Symposium. vol. 2. pp. 614–617.

  • Che T, Li X, Jin R, Huang CL (2014) Assimilating passive microwave remote sensing data into a land surface model to improve the estimation of snow depth. Remote Sens Environ 143:54–63

    Article  Google Scholar 

  • Che T, Dai L, Zheng X, Li X, Zhao K (2016) Estimation of snow depth from passive microwave brightness temperature data in forest regions of Northeast China. Remote Sens Environ 183:334–349

    Article  Google Scholar 

  • Cho E, Jacobs JM, Schroeder R, Tuttle SE, Olheiser C (2020) Improvement of operational airborne gamma radiation snow water equivalent estimates using SMAP soil moisture. Remote Sens Environ 240:111668

    Article  Google Scholar 

  • Collados-Lara AJ, Pulido-Velazquez D, Pardo- Iguzquiza E, Alonso-Gonzalez E (2020) Estimation of the spatiotemporal dynamic of snow water equivalent at mountain range scale under data scarcity. Sci Total Environ 741:140485

    Article  Google Scholar 

  • Dai LY, Che T, Ding YJ, Hao XH (2017) Evaluation of snow cover and snow depth on the Qinghai-Tibetan Plateau derived from passive microwave remote sensing. Cryosphere 11(4):1933–1948

    Article  Google Scholar 

  • Damm A, Koberl J, Prettenthaler F (2014) Does artificial snow production pay under future climate conditions? A case study for a vulnerable ski area in Austria. Tourism Manage 43(3):8–21

    Article  Google Scholar 

  • De Lannoy GJM, Reichle RH, Arsenault KR, Houser PR, Kumar S, Verhoest NEC, Pauwels VRN (2012) Multi scale assimilation of advanced microwave scanning radiometer-EOS snow water equivalent and moderate resolution imaging spectroradiometer snow cover fraction observations in northern Colorado. Water Resour Res 48:W01522

    Article  Google Scholar 

  • Dechant C, Moradkhani H (2011) Radiance data assimilation for operational snow and stream flow forecasting. Adv Water Resour 34:351–364

    Article  Google Scholar 

  • Derksen C, Walker A, Goodison B (2005) Evaluation of passive microwave snow water equivalent retrievals across the boreal forest/tundra transition of western Canada. Remote Sens Environ 96:315–327

    Article  Google Scholar 

  • Durand M, Margulis SA (2007) Correcting first-order errors in snow water equivalent estimates using a multi frequency, multi scale radiometric data assimilation scheme. J Geophys Res Atmos 112:2

    Article  Google Scholar 

  • Edwards AC, Scalenghe R, Freppaz M (2007) Changes in the seasonal snow cover of alpine regions and its effect on soil processes: a review. Quatern Int 162–163:172–181

    Article  Google Scholar 

  • Freudiger D, Kohn I, Stahl K, Weiler M (2014) Large-scale analysis of changing frequencies of rain-on-snow events with flood-generation potential. Hydrol Earth Syst Sci 18:2695–2709

    Article  Google Scholar 

  • Gan TY, Barry RG, Gizaw M, Gobena A, Balaji R (2013) Changes in North American snowpacks for 1979–2007 detected from the snow water equivalent data of SMMR and SSM/I passive microwave and related climatic factors. J Geophys Res Atmos 118:7682–7697

    Article  Google Scholar 

  • Gan Y, Zhang Y, Kongoli C, Grassotti C, Liu Y, Lee YK, Seo DG (2021) Evaluation and blending of ATMS and AMSR2 snow water equivalent retrievals over the conterminous United States. Remote Sens Environ 254:112280

    Article  Google Scholar 

  • Gharaei-Manesh S, Fathzadeh A, Taghizadeh-Mehrjardi R (2016) Comparison of artificial neural network and decision tree models in estimating spatial distribution of snow depth in a semi-arid region of Iran. Cold Reg Sci Technol 122:26–35

    Article  Google Scholar 

  • Grody NC, Basist AN (1996) Global identification of snowcover using SSM/I measurements. IEEE Trans Geosci Remote Sens 34(1):237–249

    Article  Google Scholar 

  • Guan B, Molotch NP, Waliser DE, Jepsen SM, Painter TH, Dozier J (2013) Snow water equivalent in the Sierra Nevada: blending snow sensor observations withsnowmelt model simulations. Water Resour. Res. 49(8):5029–5046. https://doi.org/10.1002/wrcr.20387

    Article  Google Scholar 

  • Hall DK, Frei A, Déry SJ (2014) Remote sensing of snow extent. John Wiley & Sons Ltd, New York

    Google Scholar 

  • Hu Y, Che T, Dai L, Xiao L (2021) Snow depth fusion based on machine learning methods for the northern hemisphere. Remote Sensing 13(7):1250

    Article  Google Scholar 

  • Huang XD, Xie HJ, Liang TG, Yi DH (2011) Estimating vertical error of SRTM and map-based DEMs using ICESat altimetry data in the eastern Tibetan Plateau. Int J Remote Sens 32(18):5177–5196

    Article  Google Scholar 

  • Immerzeel WW, Van Beek LP, Bierkens MF (2010) Climate change will affect the Asian water towers. Science 328:1382–1385

    Article  Google Scholar 

  • Kelly R (2009) The AMSR-E snow depth algorithm: description and initial results. J Remote Sens Soc Jap 29(1):307–317

    Google Scholar 

  • Kuraś PK, Weiler M, Alila Y (2008) The spatiotemporal variability of runoff generation and groundwater dynamics in a snow-dominated catchment. J Hydrolo 352:50–66

    Article  Google Scholar 

  • Largeron C, Dumont M, Morin S, Boone A, Lafaysse M, Metref S, Margulis SA (2020) Toward snow cover estimation in mountainous areas using modern data assimilation methods: a review. Front Earth Sci 8:325

    Article  Google Scholar 

  • Larue F, Royer A, De Sève D, Roy A, Picard G, Vionnet V, Cosme E (2018) Simulation and assimilation of passive microwave data using a snowpack model coupled to a calibrated radiative transfer model over northeastern Canada. Water Resour Res 54(7):4823–4848

  • Lettenmaier DP, Alsdorf D, Dozier J, Huffman GJ, Pan M, Wood EF (2015) Inroads of remote sensing into hydrologic science during the WRR era. Water Resour Res 51(9):7309–7342

    Article  Google Scholar 

  • Li DY, Durand M, Margulis SA (2015) Large-scale high-resolution modeling of microwave radiance of a deep maritime alpine snowpack. IEEE Trans Geosci Remote Sens 53:2308–2322

    Article  Google Scholar 

  • Li CH, Su FG, Yang DQ, Tong K, Meng FC, Kan BY (2017) Spatiotemporal variation of snow covers over the Tibetan Plateau based on MODIS snow product. Int J Climatol 2:2001–2014

    Google Scholar 

  • Liang JY, Liu XP, Huang KN, Li X, Shi X, Chen YN, Li J (2015) Improved snow depth retrieval by integrating microwave brightness temperature and visible/infrared reflectance. Remote Sens Environ 156:500–509

    Article  Google Scholar 

  • Liao C, Zhuang Q (2017) Quantifying the role of snowmelt in stream discharge in an Alaskan watershed: an analysis using a spatially distributed surface hydrology model. J Geophys Res Earth 122(11):2183–2195

    Article  Google Scholar 

  • Masson T, Dumont M, Mura MD, Sirguey P, Gascoin S, Dedieu J-P et al (2018) An assessment of existing methodologies to retrieve snow cover fraction from MODIS data. Remote Sens 10:619. https://doi.org/10.3390/rs10040619

    Article  Google Scholar 

  • Meløysund V, Leira B, Høiseth KV, Lisø KR (2007) Predicting snow density using meteorological data. Meteorol Appl 14:413–423

    Article  Google Scholar 

  • Moradizadeh M, Srivastava P (2021) A new model for an improved AMSR2 satellite soil moisture retrieval over agricultural areas. Comput Electron Agr 186:106205

    Article  Google Scholar 

  • Okuyama A, Imaoka K (2015) Intercalibration of advanced microwave scanning radiometer-2 (AMSR2) brightness temperature. IEEE Trans Geosci Remote Sens 53:4568–4577

    Article  Google Scholar 

  • Parveen N, Zaidi S, Danish M (2017) Development of SVR-based model and comparative analysis with MLR and ANN models for predicting the sorption capacity of Cr(VI). Process Saf Environ Prot 107:428–437

    Article  Google Scholar 

  • Pepin N et al (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5(5):424–430. https://doi.org/10.1038/nclimate2563

    Article  Google Scholar 

  • Popov A, Sautin A (2008) Selection of support vector machines parameters for regression using nested grids. In: Proceedings of 2008 Third International Forum on Strategic Technologies. pp. 329–331

  • Savoie MH, Armstrong RL, Brodzik MJ, Wang JR (2009) Atmospheric corrections for improved satellite passive microwave snow cover retrievals over the Tibet Plateau. Remote Sens Environ 113:2661–2669

    Article  Google Scholar 

  • Sexstone GA, Clow DW, Fassnacht SR, Liston GE, Hiemstra CA, Knowles JF, Penn CA (2018) Snow sublimation in mountain environments and its sensitivity to forest disturbance and climate warming. Water Resour Res 54(2):1191–1211

    Article  Google Scholar 

  • Shevade SK, Keerthi SS, Bhattacharyya C, Murthy KRK (2000) Improvements to the SMO algorithm for SVM regression. IEEE Trans Neural Netw 11:1188–1193

    Article  Google Scholar 

  • Smith T, Bookhagen B (2016) Assessing uncertainty and sensor biases in passive microwave data across High Mountain Asia. Remote Sens Environ 181:174–185

    Article  Google Scholar 

  • Smola AJ, Scholkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222

    Article  Google Scholar 

  • Tang J, Pilesjö P (2011) Estimating slope from raster data: a test of eight different algorithms in flat, undulating and steep terrain. WIT Trans Ecol Environ 12:143–154

    Article  Google Scholar 

  • Tedesco M, Derksen C, Deems JS, Foster JL (2014) Remote sensing of snow depth and snow water equivalent. Remote Sensing of the Cryosphere, pp. 73–98

  • Tedesco M, Narvekar PS (2010) Assessment of the NASA AMSR-E SWE product. IEEE J Sel Top Appl Earth Obs Remote Sens 3:141–159

    Article  Google Scholar 

  • Üstün B, Melssen W, Oudenhuijzen M, Buydens L (2005) Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization. Anal Chim Acta 544:292–305

    Article  Google Scholar 

  • Viviroli D, Dürr HH, Messerli B, Meybeck M, Weingartner R (2007) Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resour Res 43(7):W07447

    Article  Google Scholar 

  • Wang W, Huang X, Deng J, Xie H, Liang T (2015) Spatio-temporal change of snow covers and its response to climate over the Tibetan Plateau based on an improved daily cloud-free snow cover product. Remote Sens 7:169–194

    Article  Google Scholar 

  • Wang YL, Huang XD, Deng J, Ma XF, Liang TG (2016) Development and validation for daily cloud-free snow products in middle-and-high latitude areas in Eurasia. Remote Sens Technol Appl 31(5):1013–1021

    Google Scholar 

  • Wang Y, Huang X, Wang J, Zhou M, Liang T (2019) AMSR2 snow depth downscaling algorithm based on a multifactor approach over the Tibetan Plateau, China. Remote Sens Environ 231:111268

    Article  Google Scholar 

  • Wei P, Zhang T, Zhou X, Yi G, Li J, Wang N, Wen B (2021) Reconstruction of snow depth data at moderate spatial resolution (1 km) from remotely sensed snow data and multiple optimized environmental factors: a case study over the Qinghai-Tibetan plateau. Remote Sens 13:4. https://doi.org/10.3390/rs13040657

    Article  Google Scholar 

  • Wei Y, Li X, Li L, Gu L, Zheng X, Jiang T, Li X (2022) An approach to improve the spatial resolution and accuracy of AMSR2 passive microwave snow depth product using machine learning in Northeast China. Remote Sens 14:6. https://doi.org/10.3390/rs14061480

    Article  Google Scholar 

  • Xiao X, Zhang T, Zhong X, Shao W, Li X (2018) Support vector regression snow depth retrieval algorithm using passive microwave remote sensing data, Remote Sens. Environ 210:48–64

    Google Scholar 

  • Xiao X, Liang S, He T, Wu D, Pei C, Gong J (2021) Estimating fractional snow cover from passive microwave brightness temperature data using MODIS snow cover product over North America. Cryosphere 15:835–861. https://doi.org/10.5194/tc-15-835-2021

    Article  Google Scholar 

  • Yan D, Ma N, Zhang Y (2022) Development of a fine-resolution snow depth product based on the snow cover probability for the Tibetan Plateau: validation and spatial-temporal analyses. J Hydrol 605:2

    Google Scholar 

  • Yang J, Jiang L, Menard CB (2015) Evaluation of snow products over the Tibetan Plateau. Hydrol Process 29(15):3247–3260

    Article  Google Scholar 

  • Yang JW, Jiang M, Lemmetyinen J, Luojus K, Takala M, Wu SL, Pan JM (2020) Validation of remotely sensed estimates of snow water equivalent using multiple reference datasets from the middle and high latitudes of China. J Hydrol 590:125499

    Article  Google Scholar 

  • Yu H, Zhang X, Liang T, Xie H, Wang X, Feng Q, Chen Q (2012) A new approach of dynamic monitoring of 5-day snow cover extent and snow depth based on MODIS and AMSR-E data from Northern Xinjiang region. Hydrol Process 26:3052–3061

    Article  Google Scholar 

  • Zhang Y, Wang S, Barr AG, Black TA (2008) Impact of snow cover on soil temperature and its simulation in a boreal aspen forest. Cold Reg Sci Technol 52(3):355–370

    Article  Google Scholar 

  • Zhong X, Zhang T, Wang K (2014) Snow density climatology across the former USSR. Cryosphere 8:785–799

    Article  Google Scholar 

  • Zhu L, Zhang Y, Wang J, Tian W, Liu Q, Ma G, Chu Y (2021) Downscaling snow depth mapping by fusion of microwave and optical remote-sensing data based on deep learning. Remote Sens 13(4):584

    Article  Google Scholar 

Download references

Acknowledgements

The study results are the initial steps of the research project of estimating Zayandehroud dam inflow utilizing AMSR-based SWE observations. The authors kindly appreciate for support of the Iran National Science Foundation (INSF) through the research project of 98020001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Moradizadeh.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradizadeh, M., Alijanian, M. & Moeini, R. Spatial Downscaling of Snow Water Equivalent Using Machine Learning Methods Over the Zayandehroud River Basin, Iran. PFG 91, 391–404 (2023). https://doi.org/10.1007/s41064-023-00249-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41064-023-00249-9

Keywords

Navigation