Brito PQ, Stoyanova J (2018) Marker versus markerless augmented reality. Which has more impact on users? Int J Hum Comput Int 34:819–833. https://doi.org/10.1080/10447318.2017.1393974
Article
Google Scholar
Broll W (2013) Augmentierte Realität. In: Dörner R, Broll W, Grimm P, Jung B (eds) Virtual und augmented reality (VR/AR). Springer, Heidelberg
Google Scholar
Carbonell Carrera C, Bermejo Asensio LA (2017) Augmented reality as a digital teaching environment to develop spatial thinking. Cartogr Geogr Inf Sci 44:259–270. https://doi.org/10.1080/15230406.2016.1145556
Article
Google Scholar
Caudell TP, Mizell DW (1992) Augmented reality: an application of heads-up display technology to manual manufacturing processes. In: Proceedings of the Twenty-Fifth Hawaii international conference on system sciences. IEEE, pp 659–669
Clarke KC, Johnson JM, Trainor T (2019) Contemporary American cartographic research: a review and prospective. CaGIS 46:196–209. https://doi.org/10.1080/15230406.2019.1571441
Article
Google Scholar
Clements-Stephens AM, McKell-Jeffers GO, Maddux J-M, Shelton AL (2011) Strategies for spatial organization in adults and children. Vis Cogn 19:886–909. https://doi.org/10.1080/13506285.2011.595742
Article
Google Scholar
Çöltekin A, Oprean D, Wallgrün JO, Klippel A (2019) Where are we now? Re-visiting the digital earth through human-centered virtual and augmented reality geovisualization environments. Int J Digit Earth 12:119–122. https://doi.org/10.1080/17538947.2018.1560986
Article
Google Scholar
Dickmann F, Edler D, Bestgen A-K, Kuchinke L (2017) Exploiting illusory grid lines for object-location memory performance in urban topographic maps. Cartogr J 54:242–253. https://doi.org/10.1080/00087041.2016.1236509
Article
Google Scholar
Dickmann F, Keil J, Kuner J, Edler D (2019) Quadratische Gitterzellen in Topographischen Karten erhöhen die Genauigkeit von Distanzschätzungen. KN J Cartogr Geogr Inf 69:109–120. https://doi.org/10.1007/s42489-019-00014-2
Article
Google Scholar
Eastman JR (1985a) Graphic organization and memory structures for map learning. Cartographica 22:1–20. https://doi.org/10.3138/FJK4-2776-485N-6464
Article
Google Scholar
Eastman JR (1985b) Cognitive models and cartographic design research. Cartogr J 22:95–101. https://doi.org/10.1179/caj.1985.22.2.95
Article
Google Scholar
Edler D, Bestgen A-K, Kuchinke L, Dickmann F (2014) Grids in topographic maps reduce distortions in the recall of learned object locations. PLoS One 9:e98148. https://doi.org/10.1371/journal.pone.0098148
Article
Google Scholar
Edler D, Bestgen A-K, Kuchinke L, Dickmann F (2015) True-3D accentuating of grids and streets in urban topographic maps enhances human object location memory. PLoS One 10:e0116959. https://doi.org/10.1371/journal.pone.0116959
Article
Google Scholar
Edler D, Husar A, Keil J, Vetter M, Dickmann F (2018a) Virtual reality (VR) and open source software: a workflow for constructing an interactive cartographic VR environment to explore urban landscapes. KN J Cartogr Geogr Inf 68:5–13
Article
Google Scholar
Edler D, Keil J, Kuchinke L, Dickmann F (2018b) Correcting distortion errors in memory of object locations: the example of grid line spacing in topographic maps. Int J Cartogr 5:92–109. https://doi.org/10.1080/23729333.2018.1532651
Article
Google Scholar
Edler D, Keil J, Bestgen A-K, Kuchinke L, Dickmann F (2019) Hexagonal map grids—an experimental study on the performance in memory of object locations. Cartogr Geogr Inf Sci 46:401–411. https://doi.org/10.1080/15230406.2018.1496035
Article
Google Scholar
Field K, O’Brien J, Beale L (2011) Paper maps or GPS? Exploring differences in way finding behaviour and spatial knowledge acquisition. In: Ruas A (eds) Proceedings of the 25th International Cartographic Conference, International Cartographic Association, Bern
Halik Ł (2012) The analysis of visual variables for use in cartographic design of point symbols for mobile augmented reality applications. Geodesy Cartogr 61:19–30. https://doi.org/10.2478/v10277-012-0019-4
Article
Google Scholar
Hedley N (2003) Empirical evidence of advanced geographic visualization interface use. In: Proceedings of the 21st international cartographic conference (ICC), Durban, South Africa, 10–16 August. https://icaci.org/files/documents/ICC_proceedings/ICC2003/Papers/052.pdf. Accessed 19 Jan 2020
Hommel B, Gehrke J, Knuf L (2000) Hierarchical coding in the perception and memory of spatial layouts. Psychol Res 64:1–10
Article
Google Scholar
Hruby F, Ressl R, de La del Valle GB (2019) Geovisualization with immersive virtual environments in theory and practice. Int J Digit Earth 12:123–136. https://doi.org/10.1080/17538947.2018.1501106
Article
Google Scholar
Keil J, Edler D, Dickmann F (2019) Preparing the HoloLens for user studies: an augmented reality interface for the spatial adjustment of holographic objects in 3D indoor environments. KN J Cartogr Geogr Inf 69:205–215. https://doi.org/10.1007/s42489-019-00025-z
Article
Google Scholar
Kersten TP, Deggim S, Tschirschwitz F, Lindstaedt M, Hinrichsen N (2018) Segeberg 1600—Eine Stadtrekonstruktion in Virtual Reality. KN J Cartogr Geogr Inf 68:183–191
Article
Google Scholar
Kitchin R, Blades M (2002) The cognition of geographic space. I.B. Tauris, London
Book
Google Scholar
Klippel A, Knuf L, Hommel B, Freksa C (2005) Perceptually induced distortions in cognitive maps. In: Freksa C, Knauff M, Krieg-Brückner B, Nebel B, Barkowsky T (eds) Spatial cognition IV. Reasoning, action, interaction. Springer, Berlin, pp 204–213
Chapter
Google Scholar
Kuchinke L, Dickmann F, Edler D, Bordewieck M, Bestgen A-K (2016) The processing and integration of map elements during a recognition memory task is mirrored in eye-movement patterns. J Environ Psychol 47:213–222. https://doi.org/10.1016/j.jenvp.2016.07.002
Article
Google Scholar
Kulik L, Klippel A (1999) Reasoning about cardinal directions using grids as qualitative geographic coordinates. In: Freksa C, Mark DM (eds) COSIT ‘99: Proceedings of the international conference on spatial information theory: cognitive and computational foundations of geographic information science, Springer, Berlin, pp 205–220
Lee I-J, Chen C-H, Chang K-P (2016) Augmented reality technology combined with three-dimensional holography to train the mental rotation ability of older adults. Comput Hum Behav 65:488–500. https://doi.org/10.1016/j.chb.2016.09.014
Article
Google Scholar
Li Z, Phillips J, Durgin FH (2011) The underestimation of egocentric distance: evidence from frontal matching tasks. Atten Percept Psychophys 73:2205–2217. https://doi.org/10.3758/s13414-011-0170-2
Article
Google Scholar
Liu F, Jonsson T, Seipel S (2020) Evaluation of augmented reality-based building diagnostics using third person perspective. ISPRS Int J Geo-Inf 9:1–22. https://doi.org/10.3390/ijgi9010053
Article
Google Scholar
Lochhead I, Hedley N (2019) Mixed reality emergency management: bringing virtual evacuation simulations into real-world built environments. Int J Digit Earth 12:190–208. https://doi.org/10.1080/17538947.2018.1425489
Article
Google Scholar
Londergan C, Hedley N (2014) Flexible mixed reality and situated simulation as emerging forms of geovisualization. Cartographica 49:175–187. https://doi.org/10.3138/carto.49.3.2440
Article
Google Scholar
Loomis JM, Klatzky RL, Golledge RG, Philbeck JW (1999) Human navigation by path integration. In: Golledge RG (ed) Wayfinding behavior: cognitive mapping and other spatial processes. The Johns Hopkins University Press, Baltimore, pp 125–151
Google Scholar
Mark DM, Freksa C, Hirtle SC, Lloyd R, Tversky B (1999) Cognitive models of geographical space. Int J Geogr Inf Sci 13:747–774
Article
Google Scholar
McNamara TP, Hardy JK, Hirtle SC (1989) Subjective hierarchies in spatial memory. J Exp Psychol Learn Mem Cogn 15:211–227. https://doi.org/10.1037//0278-7393.15.2.211
Article
Google Scholar
Milgram P, Kishino F (1994) A taxonomy of mixed reality visual displays. IEICE Trans Inf Syst 77:1–15
Google Scholar
Milgram P, Takemura H, Utsumi A, Kishino F (1995) Augmented reality: A class of displays on the reality-virtuality continuum. In: Das H (ed) Telemanipulator and telepresence technologies. SPIE, Bellingham, Washington, pp 282–292. https://doi.org/10.1117/12.197321
Chapter
Google Scholar
Millonig A, Schechtner K (2007) Developing landmark-based pedestrian-navigation systems. IEEE Trans Intell Transp Sys 8:43–49. https://doi.org/10.1109/TITS.2006.889439
Article
Google Scholar
Montello DR (2002) Cognitive map-design research in the twentieth century: theoretical and empirical approaches. CaGIS 29:283–304
Article
Google Scholar
Noor AK (2016) The Hololens revolution. Mech Eng 138:30–35. https://doi.org/10.1115/1.2016-Oct-1
Article
Google Scholar
Sargent J, Dopkins S, Philbeck J, Chichka D (2010) Chunking in spatial memory. J Exp Psychol Learn Mem Cogn 36:576–589. https://doi.org/10.1037/a0017528
Article
Google Scholar
Schart D, Tschanz N (2015) Praxishandbuch Augmented Reality. UVK Verlagsgesellschaft, Konstanz
Google Scholar
Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189–208
Article
Google Scholar
Tversky B (1993) Cognitive maps, cognitive collages, and spatial mental models. In: Frank AU, Campari I (eds) Spatial information theory: a theoretical basis for GIS. COSIT. Springer, Berlin, pp 14–24
Chapter
Google Scholar
Viguier A, Clément G, Trotter Y (2001) Distance perception within near visual space. Perception 30:115–124. https://doi.org/10.1068/p3119
Article
Google Scholar
Werner P (2019) Review of implementation of augmented reality into the georeferenced analogue and digital maps and images. Information 10:12. https://doi.org/10.3390/info10010012
Article
Google Scholar
Xu Y, Chun MM (2009) Selecting and perceiving multiple visual objects. Trends Cogn Sci 13:167–174. https://doi.org/10.1016/j.tics.2009.01.008
Article
Google Scholar