Skip to main content
Log in

An overview of fly ash utilization in production of geopolymer bricks and various factors influencing its strength

  • Review
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Fly ash-based geopolymer bricks are made by combining a sufficient amount of fly ash with filler materials and an alkaline solution. These bricks do not need the addition of cement as a binding material. Cement manufacturing is one of the most polluting activities in the construction industry; it is essential to find a way to reduce cement utilization. Although researchers have succeeded in developing fly ash-based geopolymer samples on a laboratory scale, knowledge about industrial-scale production of standard-size geopolymer brick specimens is still limited and unexplored. From an industrial standpoint, it is critical to comprehend the different elements that influence the qualities of fly ash-based geopolymer bricks, including the effect of curing condition/temperature/duration, raw materials, alkaline solution molarity, and water/binder ratio. In this study, more than 80 research articles are taken into account to understand the same. Although, the present paper is a review article; additionally, a small experimental work carried out by the authors has been reported in this paper. Geopolymer bricks of standard size, suitable for use in actual masonry work, were manufactured on an industrial scale. In contrast, previous researches mainly focused on developing small miniature bricks. The experimental results indicate that the compressive strength was influenced by the molarity of alkaline solution /curing period; the bricks prepared with 16 molars of NaOH have higher strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

FA:

Fly ash

CO2 :

Carbon dioxide

C-S-H:

Calcium silicate hydrates

CTM:

Compressive strength testing machine

N-A-S-H:

Sodium aluminosilicate hydrate gel

RHA:

Rice husk ash

GGBS:

Ground granulated blast furnace slag

GT:

Gigatonne

M:

Molarity

OPC:

Ordinary Portland cement

Si:

Silicon

O:

Oxygen

Al:

Aluminium

H2O:

Water

Na2SiO3 :

Sodium silicate

NaOH:

Sodium hydroxide

Al2O2 :

Aluminium dioxide

SiO2 :

Silicon dioxide

References

  1. Gupta M, Kulkarni NH (2020) A review on the recent development of ambient cured geopolymer composites, pp 179–188

  2. Gavali HR, Bras A, Faria P, Ralegaonkar RV et al (2019) Development of sustainable alkali-activated bricks using industrial wastes. Constr Build Mater 215:180–191

    Article  Google Scholar 

  3. Naenudon S, Vilaivong A, Zaetang Y et al (2022) High flexural strength light-weight fly ash geopolymer mortar containing waste fiber cement. Case Stud Constr Mater 16:e01121. https://doi.org/10.1016/J.CSCM.2022.E01121

    Article  Google Scholar 

  4. Gautam K, Mishra SS (2022) Effect of recycled concrete aggregate on mechanical, physical, and durability properties of GGBS–fly ash-based geopolymer concrete. Innov Infrastruct Solut. https://doi.org/10.1016/j.matpr.2021.12.442

    Article  Google Scholar 

  5. Choeycharoen P, Sornlar W et al (2022) A sustainable bottom ash-based alkali-activated materials and geopolymers synthesized by using activator solutions from industrial wastes. J Build Eng 54:104659. https://doi.org/10.1016/J.JOBE.2022.104659

    Article  Google Scholar 

  6. Madani H, Ramezanianpour AA, Shahbazinia M, Ahmadi E (2020) Geopolymer bricks made from less active waste materials. Constr Build Mater 247:118441. https://doi.org/10.1016/j.conbuildmat.2020.118441

    Article  Google Scholar 

  7. Chindaprasirt P, Chareerat T, Hatanaka S et al (2011) High-Strength geopolymer using fine high-calcium fly ash. J Mater Civ Eng 23:264–270. https://doi.org/10.1061/(ASCE)mt.1943-5533.0000161

    Article  Google Scholar 

  8. Kovalchuk G, Fernández-Jiménez A et al (2007) Alkali-activated fly ash: effect of thermal curing conditions on mechanical and microstructural development—part II. Fuel 86:315–322. https://doi.org/10.1016/j.fuel.2006.07.010

    Article  Google Scholar 

  9. Andini S, Cioffi R, Colangelo F et al (2008) Coal fly ash as raw material for the manufacture of geopolymer-based products. Waste Manag 28:416–423. https://doi.org/10.1016/j.wasman.2007.02.001

    Article  Google Scholar 

  10. Arıöz Ö, Kilinç K, Tuncan M et al (2010) Physical, mechanical and micro-structural properties of F type fly-ash based geopolymeric bricks produced by pressure forming process. Adv Sci Technol 69:69–74. https://doi.org/10.4028/www.scientific.net/ast.69.69

    Article  Google Scholar 

  11. Ferone C, Colangelo F, Cioffi R, et al (2011) Mechanical performances of weathered coal fly ash based geopolymer bricks. In: Procedia engineering. Elsevier Ltd, pp 745–752

  12. Ibrahim WMW, Hussin K, Al Bakri Abdullah MM et al (2015) A review of fly ash-based geopolymer lightweight bricks. Appl Mech Mater 754–755:452–456. https://doi.org/10.4028/www.scientific.net/amm.754-755.452

    Article  Google Scholar 

  13. Ahmari S, Zhang L (2012) Production of eco-friendly bricks from copper mine tailings through geopolymerization. Constr Build Mater 29:323–331. https://doi.org/10.1016/j.conbuildmat.2011.10.048

    Article  Google Scholar 

  14. Sadangi JK, Nayak BD, Muduli SD, et al (2012) Effect of NaOH concentration in manufacture of geopolymer fly ash by effect of NaOH concentration in manufacturing

  15. Ahmari S, Zhang L (2013) Durability and leaching behavior of mine tailings-based geopolymer bricks. Constr Build Mater 44:743–750. https://doi.org/10.1016/j.conbuildmat.2013.03.075

    Article  Google Scholar 

  16. Mathew BJ, Natarajan C (2013) Development of coal ash-GGBS based geopolymer bricks.

  17. Antony Jeyasehar C, Saravanan G, Ramakrishnan AK (2013) Strength and durability studies on fly ash-based geopolymer bricks. Asian J Civ Eng 14:797–808

    Google Scholar 

  18. Iftikhar S, Rashid K, Ul Haq E et al (2020) Synthesis and characterization of sustainable geopolymer green clay bricks: an alternative to burnt clay brick. Constr Build Mater 259:119659. https://doi.org/10.1016/j.conbuildmat.2020.119659

    Article  Google Scholar 

  19. Çiçek T, Çinçin Y (2015) Use of fly ash in production of light-weight building bricks. Constr Build Mater 94:521–527. https://doi.org/10.1016/j.conbuildmat.2015.07.029

    Article  Google Scholar 

  20. Hwang CL, Huynh TP (2015) Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Constr Build Mater 101:1–9. https://doi.org/10.1016/j.conbuildmat.2015.10.025

    Article  Google Scholar 

  21. Suksiripattanapong C, Horpibulsuk S, Chanprasert P et al (2015) Compressive strength development in fly ash geopolymer masonry units manufactured from water treatment sludge. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2015.02.040

    Article  Google Scholar 

  22. Timakul P, Thanaphatwetphisit K et al (2015) Effect of Silica to alumina ratio on the compressive strength of class C fly ash-based geopolymers. Key Eng Mater 659:80–84. https://doi.org/10.4028/www.scientific.net/KEM.659.80

    Article  Google Scholar 

  23. Choo H, Lim S, Lee W et al (2016) Compressive strength of one-part alkali-activated fly ash using red mud as alkali supplier. Constr Build Mater 125:21–28. https://doi.org/10.1016/j.conbuildmat.2016.08.015

    Article  Google Scholar 

  24. Kalaw ME, Culaba A, Hinode H et al (2016) Optimizing and characterizing geopolymers from ternary blend of philippine coal fly ash, coal bottom ash and rice hull ash. Materials (Basel). https://doi.org/10.3390/MA9070580

    Article  Google Scholar 

  25. Mer G (2016) Manufacture of geopolymer fly ash bricks using class C fly ash. Int J Adv Res Dev Int 1:60–67

    Google Scholar 

  26. Duan P, Yan C et al (2017) Compressive strength and microstructure of fly ash-based geopolymer blended with silica fume under thermal cycle. Cem Concr Compos 78:108–119. https://doi.org/10.1016/j.cemconcomp.2017.01.009

    Article  Google Scholar 

  27. Samadhi TW, Wulandari W, Prasetyo MI et al (2017) Synthesis of geopolymer from biomass-coal ash blends. AIP Conf Proc. https://doi.org/10.1063/1.5003514

    Article  Google Scholar 

  28. Wongsa A, Sata V, Nuaklong P et al (2018) Use of crushed clay brick and pumice aggregates in light-weight geopolymer concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2018.08.176

    Article  Google Scholar 

  29. Hajimohammadi A, Ngo T et al (2018) Glass waste versus sand as aggregates: the characteristics of the evolving geopolymer binders. J Clean Prod 193:593–603. https://doi.org/10.1016/j.jclepro.2018.05.086

    Article  Google Scholar 

  30. Capasso I, Lirer S, Flora A et al (2019) Reuse of mining waste as aggregates in fly ash-based geopolymers. J Clean Prod 220:65–73. https://doi.org/10.1016/j.jclepro.2019.02.164

    Article  Google Scholar 

  31. Allahverdi A, Mahinroosta M (2020) Recycling aluminosilicate industrial wastes into geopolymer: a review. Elsevier Ltd

    Book  Google Scholar 

  32. Cultrone G, Aurrekoetxea I, Casado C et al (2020) Sawdust recycling in the production of light-weight bricks: how the amount of additive and the firing temperature influence the physical properties of the bricks. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.117436

    Article  Google Scholar 

  33. Hodhod OA, Alharthy SE et al (2020) Physical and mechanical properties for metakaolin geopolymer bricks. Constr Build Mater 265:120217. https://doi.org/10.1016/j.conbuildmat.2020.120217

    Article  Google Scholar 

  34. Ngo S (2020) Evaluation of the engineering properties of fly ash-based geopolymer bricks. Int J Civ Eng Technol 11:43–51

    Google Scholar 

  35. Nguyen HT, Dang PT (2021) Fly ash-based geopolymer: green material in carbon-constrained society. Solid State Phenom 321:65–71. https://doi.org/10.4028/www.scientific.net/ssp.321.65

    Article  Google Scholar 

  36. Mahdi SN, Babu RDV, Shashishankar A et al (2020) Influence of brick industrial rice husk ash on properties of ambient cured geopolymer mortar matrix. Mater Today Proc 43:1160–1166. https://doi.org/10.1016/j.matpr.2020.08.609

    Article  Google Scholar 

  37. Tian X, Xu W, Song S et al (2020) Effects of curing temperature on the compressive strength and microstructure of copper tailing-based geopolymers. Chemosphere 253:126754. https://doi.org/10.1016/j.chemosphere.2020.126754

    Article  Google Scholar 

  38. Anu R (2021) Development of ambient cured geopolymer bricks. Int J Adv Res Eng Technol 12:229–236. https://doi.org/10.34218/IJARET.12.2.2020.021

    Article  Google Scholar 

  39. Hosseini S, Brake NA, Nikookar M et al (2021) Mechanochemically activated bottom ash-fly ash geopolymer. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2021.103976

    Article  Google Scholar 

  40. Davidovits J (2017) Geopolymers: ceramic-like inorganic polymers. J Ceram Sci Technol 8:335–350. https://doi.org/10.4416/JCST2017-00038

    Article  Google Scholar 

  41. Ibrahim WMW, Hussin K, Abdullah MMAB et al (2011) Geopolymer light-weight bricks manufactured from fly ash and foaming agent. AIP Conf Proc. https://doi.org/10.1063/1.4981870

    Article  Google Scholar 

  42. Deraman LM, Abdullah MMA, Ming LY, et al (2017) Mechanical properties on geopolymer brick: a review, p 020041

  43. Toniolo N, Boccaccini AR (2017) Fly ash-based geopolymers containing added silicate waste. A review. Ceram Int 43:14545–14551. https://doi.org/10.1016/j.ceramint.2017.07.221

    Article  Google Scholar 

  44. Zhang Z, Wong YC, Arulrajah A et al (2018) A review of studies on bricks using alternative materials and approaches. Constr Build Mater 188:1101–1118. https://doi.org/10.1016/j.conbuildmat.2018.08.152

    Article  Google Scholar 

  45. Duxson P, Fernández-Jiménez A, Provis JL et al (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933. https://doi.org/10.1007/s10853-006-0637-z

    Article  Google Scholar 

  46. Ahmad M, Rashid K, Hameed R et al (2022) Physico-mechanical performance of fly ash based geopolymer brick: influence of pressure-temperature-time. J Build Eng 50:104161. https://doi.org/10.1016/j.jobe.2022.104161

    Article  Google Scholar 

  47. Al-Hasan SJA, Balamuralikrishnan R, Altarawneh M et al (2020) Eco-friendly asphalt approach for the development of sustainable roads. J Human Earth Future 1:97–111. https://doi.org/10.28991/hef-2020-01-03-01

    Article  Google Scholar 

  48. Deraman LM, Al Bakrig Abdullah MM, Yun Ming L et al (2016) The strength of bottom ash-based geopolymer brick with inclusion of fly ash. Mater Sci Forum 841:26–29. https://doi.org/10.4028/www.scientific.net/MSF.841.26

    Article  Google Scholar 

  49. Shukor Lim NHA, Samadi M, Ariffin NF et al (2018) Effect of curing conditions on compressive strength of FA-POFA-based geopolymer mortar. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/431/9/092007

    Article  Google Scholar 

  50. Sukmak P, Horpibulsuk S, Shen SL (2013) Strength development in clay-fly ash geopolymer. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2012.11.015

    Article  Google Scholar 

  51. Kumar S, Mucsi G, Kristály F et al (2017) Mechanical activation of fly ash and its influence on micro and nano-structural behaviour of resulting geopolymers. Adv Powder Technol 28:805–813. https://doi.org/10.1016/j.apt.2016.11.027

    Article  Google Scholar 

  52. Strydom CA, Swanepoel JC (2002) Utilisation of fly ash in a geopolymeric material. Appl Geochem 17:1143–1148

    Article  Google Scholar 

  53. Kumar A, Kumar S (2013) Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization. Constr Build Mater 38:865–871. https://doi.org/10.1016/j.conbuildmat.2012.09.013

    Article  Google Scholar 

  54. Pandey A, Kumar B (2019) Evaluation of water absorption and chloride ion penetration of rice straw ash and microsilica admixed pavement quality concrete. Heliyon 5:e02256. https://doi.org/10.1016/j.heliyon.2019.e02256

    Article  Google Scholar 

  55. Pandey A, Kumar B (2019) Effects of rice straw ash and micro silica on mechanical properties of pavement quality concrete. J Build Eng 26:100889. https://doi.org/10.1016/j.jobe.2019.100889

    Article  Google Scholar 

  56. Poinot T, Laracy ME, Aponte C et al (2018) Beneficial use of boiler ash in alkali-activated bricks. Resour Conserv Recycl 128:1–10. https://doi.org/10.1016/j.resconrec.2017.09.013

    Article  Google Scholar 

  57. Prasad D, Pandey A et al (2021) Sustainable production of recycled concrete aggregates by lime treatment and mechanical abrasion for M40 grade concrete. Constr Build Mater 268:121119. https://doi.org/10.1016/j.conbuildmat.2020.121119

    Article  Google Scholar 

  58. Faheem MTM, Al Bakri AMM, Kamarudin H et al (2013) Application of clay-based geopolymer in brick production: a review. Adv Mater Res 626:878–882. https://doi.org/10.4028/www.scientific.net/AMR.626.878

    Article  Google Scholar 

  59. Wan Ibrahim WM, Hussin K, Al Bakri Abdullah MM et al (2014) Processing and characterization of fly ash-based geopolymer bricks. Rev Chim 65:1340–1345

    Google Scholar 

  60. Murmu AL, Patel A (2018) Towards sustainable bricks production: an overview. Constr Build Mater 165:112–125. https://doi.org/10.1016/j.conbuildmat.2018.01.038

    Article  Google Scholar 

  61. Venugopal K, Radhakrishna, Sasalatti VM (2016) Ambient cured alkali activated flyash masonry units. In: IOP conference series: materials science and engineering

  62. Pandey A, Kumar B (2020) Investigation on the effects of acidic environment and accelerated carbonation on concrete admixed with rice straw ash and micro silica. J Build Eng 29:101125. https://doi.org/10.1016/j.jobe.2019.101125

    Article  Google Scholar 

  63. Rattanasak U, Chindaprasirt P (2009) Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner Eng 22:1073–1078. https://doi.org/10.1016/j.mineng.2009.03.022

    Article  Google Scholar 

  64. Yousuf A, Manzoor SO, Youssouf M et al (2020) Fly ash: production and utilization in India—an overview. J Mater Environ Sci 2020:911–921

    Google Scholar 

  65. Yin T, Zhang J, Wang Z et al (2022) Shear performance of tongue-and-groove joints for CLT. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2022.126449

    Article  Google Scholar 

  66. Amin S, El-Sherbiny S, Abadir M et al (2017) Fabrication of geopolymer bricks using ceramic dust waste. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2017.09.052

    Article  Google Scholar 

  67. Pappu A, Saxena M, Asolekar SR (2007) Solid wastes generation in India and their recycling potential in building materials. Build Environ 42:2311–2320. https://doi.org/10.1016/j.buildenv.2006.04.015

    Article  Google Scholar 

  68. Deraman LM, Abdullah MMAB, Ming LY et al (2017) Density and morphology studies on bottom ash and fly ash geopolymer brick. AIP Conf Proc. https://doi.org/10.1063/1.4981869

    Article  Google Scholar 

  69. He J, Jie Y, Zhang J et al (2013) Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem Concr Compos 37:108–118. https://doi.org/10.1016/j.cemconcomp.2012.11.010

    Article  Google Scholar 

  70. Mohsen Q, Mostafa NY (2010) Investigating the possibility of utilizing low kaolinitic clays in production of geopolymer bricks. Ceram Silikaty 54:160–168

    Google Scholar 

  71. Cheah CB, Part WK et al (2017) The long-term engineering properties of cementless building block work containing a large volume of wood ash and coal fly ash. Constr Build Mater 143:522–536. https://doi.org/10.1016/j.conbuildmat.2017.03.162

    Article  Google Scholar 

  72. Mohammed BS, Liew MS, Alaloul WS et al (2018) Development of rubberized geopolymer interlocking bricks. Case Stud Constr Mater 8:401–408. https://doi.org/10.1016/j.cscm.2018.03.007

    Article  Google Scholar 

  73. Apithanyasai S, Nooaek P et al (2018) The utilization of concrete residue with electric arc furnace slag in the production of geopolymer bricks. Eng J 22:1–14. https://doi.org/10.4186/ej.2018.22.1.1

    Article  Google Scholar 

  74. Ding E, Cao C, Hu H et al (2020) Application of central composite design to the optimization of fly ash-based geopolymers. Constr Build Mater 230:116960. https://doi.org/10.1016/j.conbuildmat.2019.116960

    Article  Google Scholar 

  75. Frayyeh QJ, Kamil MH (2021) The effect of adding fibers on dry shrinkage of geopolymer concrete. Civ Eng J 7:2099–2108. https://doi.org/10.28991/cej-2021-03091780

    Article  Google Scholar 

  76. El-Naggar KAM, Amin SK, El-Sherbiny SA et al (2019) Preparation of geopolymer insulating bricks from waste raw materials. Constr Build Mater 222:699–705. https://doi.org/10.1016/j.conbuildmat.2019.06.182

    Article  Google Scholar 

  77. Temuujin J, Van Riessen A (2009) Effect of fly ash preliminary calcination on the properties of geopolymer. J Hazard Mater 164:634–639. https://doi.org/10.1016/j.jhazmat.2008.08.065

    Article  Google Scholar 

  78. Wattimena OK, Antoni A et al (2017) A review on the effect of fly ash characteristics and their variations on the synthesis of fly ash-based geopolymer. AIP Conf Proc. https://doi.org/10.1063/1.5003524

    Article  Google Scholar 

  79. Mahdi SN, Babu RV, Hossiney N et al (2022) Strength and durability properties of geopolymer paver blocks made with fly ash and brick kiln rice husk ash. Case Stud Constr Mater 16:e00800. https://doi.org/10.1016/J.CSCM.2021.E00800

    Article  Google Scholar 

  80. Ren B, Zhao Y, Bai H et al (2021) Eco-friendly geopolymer prepared from solid wastes: a critical review. Chemosphere 267:128900. https://doi.org/10.1016/j.chemosphere.2020.128900

    Article  Google Scholar 

  81. Kalombe RM, Ojumu VT, Eze CP et al (2020) Fly ash-based geopolymer building materials for green and sustainable development. Materials (Basel) 13:1–17. https://doi.org/10.3390/ma13245699

    Article  Google Scholar 

  82. Dupuy C, Havette J, Gharzouni A et al (2019) Metakaolin-based geopolymer: formation of new phases influencing the setting time with the use of additives. Constr Build Mater 200:272–281. https://doi.org/10.1016/j.conbuildmat.2018.12.114

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, Grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

Idea of the article—BKS. Literature survey and data analysis—BKS. Drafting of the article/critical revision—BKS and SS. Supervision—SS.

Corresponding author

Correspondence to Siddhartha Sengupta.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B.K., Sengupta, S. An overview of fly ash utilization in production of geopolymer bricks and various factors influencing its strength. Innov. Infrastruct. Solut. 7, 283 (2022). https://doi.org/10.1007/s41062-022-00891-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-022-00891-z

Keywords

Navigation