Skip to main content
Log in

An experimental study on properties of concrete incorporating colloidal nanosilica and alccofine

  • Technical paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Nano- and micromaterials are prospective materials in various fields of science and technology. For cement industry, these materials have the potential to improve the properties of cementitious products. This study presents the results of an experimental investigation on hardened and durability properties of concrete matrix by incorporation of colloidal nanosilica (CNS) and alccofine (AF). Microstructural studies using X-ray diffraction (XRD) analysis, field emission scanning electron microscope (FE-SEM), thermogravimetric analysis (TG) and Fourier transform infrared spectroscopy were conducted to understand the relationship between hardened properties and microstructure. In this study, cement was partially replaced by up to 0.45% CNS and 20% AF. Keeping water-to-binder ratio constant at 0.44, a total of 12 mixtures were designed based on replacement ratio. Results indicated that incorporation of AF and CNS led to a significant improvement in strength and durability properties relative to control concrete. An optimum percentage of CNS and AF was determined using compressive strength, and a maximum increase in strength was obtained at 15% AF and 0.45% CNS. XRD, FTIR and TG analysis showed the formation of hydration products and consumption of portlandite during pozzolanic reaction with AF and CNS. A perusal of FESEM images showed a compacted concrete matrix which is reckoned to be a pivotal factor in enhancing the strength and durability characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Saloni P, Yan Lim Y, Pham TM (2021) Influence of Portland cement on performance of fine rice husk ash geopolymer concrete: strength and permeability properties. Constr Build Mater 300:124321. https://doi.org/10.1016/j.conbuildmat.2021.124321

    Article  Google Scholar 

  2. Crow JM (2008) The concrete conundrum. Chem World 5:62–66

    Google Scholar 

  3. Min Zhan P, Hai He Z, Ming Ma Z, Feng Liang C, Xiang Zhang X, Abreham AA, Yan Shi J (2020) Utilization of nano-metakaolin in concrete: a review. J Build Eng 30:101259. https://doi.org/10.1016/j.jobe.2020.101259

    Article  Google Scholar 

  4. Hemalatha T, Ramaswamy A (2017) A review on fly ash characteristics—towards promoting high volume utilization in developing sustainable concrete. J Clean Prod 147:546–559. https://doi.org/10.1016/j.jclepro.2017.01.114

    Article  Google Scholar 

  5. Khan MI, Siddique R (2011) Utilization of silica fume in concrete: review of durability properties. Resour Conserv Recycl 57:30–35. https://doi.org/10.1016/j.resconrec.2011.09.016

    Article  Google Scholar 

  6. Siddika A, Al Mamun MA, Alyousef R, Mohammadhosseini H (2021) State-of-the-art-review on rice husk ash: a supplementary cementitious material in concrete. J King Saud Univ Eng Sci 33:294–307. https://doi.org/10.1016/j.jksues.2020.10.006

    Article  Google Scholar 

  7. Özbay E, Erdemir M, Durmuş HI (2016) Utilization and efficiency of ground granulated blast furnace slag on concrete properties–a review. Constr Build Mater 105:423–434. https://doi.org/10.1016/j.conbuildmat.2015.12.153

    Article  Google Scholar 

  8. Mohamad SA, Al-Hamd RKS, Khaled TT (2020) Investigating the effect of elevated temperatures on the properties of mortar produced with volcanic ash. Innov Infrastruct Solut 5:1–11. https://doi.org/10.1007/s41062-020-0274-4

    Article  Google Scholar 

  9. Zghair LAG, Hamad HH, Mohamad SA, Al-Hamd RKS (2021) Evaluate the compressive strength of cement paste modified with high reactivity attapulgite and affected by curing temperature. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.09.058

    Article  Google Scholar 

  10. Shi J, Tan J, Liu B, Chen J, Dai J, He Z (2021) Experimental study on full-volume slag alkali-activated mortars: air-cooled blast furnace slag versus machine-made sand as fine aggregates. J Hazard Mater 403:123983. https://doi.org/10.1016/j.jhazmat.2020.123983

    Article  Google Scholar 

  11. Yu R, Spiesz P, Brouwers HJH (2015) Development of an eco-friendly ultra-high performance concrete (UHPC) with efficient cement and mineral admixtures uses. Cem Concr Compos 55:383–394. https://doi.org/10.1016/j.cemconcomp.2014.09.024

    Article  Google Scholar 

  12. Ganesh P, Murthy AR (2019) Tensile behaviour and durability aspects of sustainable ultra-high performance concrete incorporated with GGBS as cementitious material. Constr Build Mater 197:667–680. https://doi.org/10.1016/j.conbuildmat.2018.11.240

    Article  Google Scholar 

  13. Zhou Y, Zhang Z (2020) The hydration properties of ultra-fine ground granulated blast-furnace slag cement with a low water-to-binder ratio. J Therm Anal Calorim 146:1593–1601. https://doi.org/10.1007/s10973-020-10181-4

    Article  Google Scholar 

  14. Patra RK, Mukharjee BB (2016) Fresh and hardened properties of concrete incorporating ground granulated blast furnace slag-a review. Adv Concr Constr 4:283–303. https://doi.org/10.12989/acc.2016.4.4.283

    Article  Google Scholar 

  15. Lai MH, Zou J, Yao B, Ho JCM, Zhuang X, Wang Q (2021) Improving mechanical behavior and microstructure of concrete by using BOF steel slag aggregate. Constr Build Mater 277:122269. https://doi.org/10.1016/j.conbuildmat.2021.122269

    Article  Google Scholar 

  16. Amran M, Murali G, Khalid NHA, Fediuk R, Ozbakkaloglu T, Lee YH, Haruna S, Lee YY (2021) Slag uses in making an ecofriendly and sustainable concrete: a review. Constr Build Mater 272:121942. https://doi.org/10.1016/j.conbuildmat.2020.121942

    Article  Google Scholar 

  17. Gencel O, Karadag O, Oren OH, Bilir T (2021) Steel slag and its applications in cement and concrete technology: a review. Constr Build Mater 283:122783. https://doi.org/10.1016/j.conbuildmat.2021.122783

    Article  Google Scholar 

  18. Vejmelková E, Pavlíková M, Keršner Z, Rovnaníková P, Ondráček M, Sedlmajer M, Černý R (2009) High performance concrete containing lower slag amount: a complex view of mechanical and durability properties. Constr Build Mater 23:2237–2245. https://doi.org/10.1016/j.conbuildmat.2008.11.018

    Article  Google Scholar 

  19. Binici H, Temiz H, Köse MM (2007) The effect of fineness on the properties of the blended cements incorporating ground granulated blast furnace slag and ground basaltic pumice. Constr Build Mater 21:1122–1128. https://doi.org/10.1016/j.conbuildmat.2005.11.005

    Article  Google Scholar 

  20. Luo R, Cai Y, Wang C, Huang X (2003) Study of chloride binding and diffusion in GGBS concrete. Cem Concr Res 33:1–7. https://doi.org/10.1016/S0008-8846(02)00712-3

    Article  Google Scholar 

  21. Nakamura N, Sakai M, Swamy RN (1992) Effect of slag fineness on the development of concrete strength and microstructure. Am Concr Inst ACI Spec Publ 132:1343–1366

    Google Scholar 

  22. Sengul O, Tasdemir MA (2009) Compressive strength and rapid chloride permeability of concretes with ground fly ash and slag. J Mater Civ Eng 21:494–501. https://doi.org/10.1061/(asce)0899-1561(2009)21:9(494)

    Article  Google Scholar 

  23. Yun CM, Rahman MR, Phing CYW, Chie AWM, Bin Bakri MK (2020) The curing times effect on the strength of ground granulated blast furnace slag (GGBFS) mortar. Constr Build Mater 260:120622. https://doi.org/10.1016/j.conbuildmat.2020.120622

    Article  Google Scholar 

  24. Chithra D, Nazeer M (2012) Strength and chloride permeability studies on ground granulated blast furnace slag admixed medium strength concrete. In: 2012 international conference on green technologies (ICGT), pp. 103–106. https://doi.org/10.1109/ICGT.2012.6477955

  25. Sharkawi AM, Abd-Elaty MA, Khalifa OH (2018) Synergistic influence of micro-nano silica mixture on durability performance of cementious materials. Constr Build Mater 164:579–588. https://doi.org/10.1016/j.conbuildmat.2018.01.013

    Article  Google Scholar 

  26. Emamian SA, Eskandari-Naddaf H (2019) Effect of porosity on predicting compressive and flexural strength of cement mortar containing micro and nano-silica by ANN and GEP. Constr Build Mater 218:8–27. https://doi.org/10.1016/j.conbuildmat.2019.05.092

    Article  Google Scholar 

  27. Du H, Du S, Liu X (2014) Durability performances of concrete with nano-silica. Constr Build Mater 73:705–712. https://doi.org/10.1016/j.conbuildmat.2014.10.014

    Article  Google Scholar 

  28. Papatzani S (2016) Effect of nanosilica and montmorillonite nanoclay particles on cement hydration and microstructure. Mater Sci Technol 32:138–153. https://doi.org/10.1179/1743284715Y.0000000067

    Article  Google Scholar 

  29. Hassan MS, Jaber INGAA (2017) Fresh and hardened properties of nanosilica and microsilica contained self-consolidating concretes. ARPN J Eng Appl Sci 12:5140–5153

    Google Scholar 

  30. He Z, Chen X, Cai X (2019) Influence and mechanism of micro/nano-mineral admixtures on the abrasion resistance of concrete. Constr Build Mater 197:91–98. https://doi.org/10.1016/j.conbuildmat.2018.11.224

    Article  Google Scholar 

  31. Chen Y, Deng YF, Li MQ (2016) Influence of nano-SiO2 on the consistency, setting time, early-age strength, and shrinkage of composite cement pastes, adv. Mater Sci Eng 2016:1–8. https://doi.org/10.1155/2016/5283706

    Article  Google Scholar 

  32. Mondal P, Shah SP, Marks LD, Gaitero JJ (2010) Comparative study of the effects of microsilica and nanosilica in concrete. Transp Res Rec 2141:6–9. https://doi.org/10.3141/2141-02

    Article  Google Scholar 

  33. Fernández JM, Duran A, Navarro-Blasco I, Lanas J, Sirera R, Alvarez JI (2013) Influence of nanosilica and a polycarboxylate ether superplasticizer on the performance of lime mortars. Cem Concr Res 43:12–24. https://doi.org/10.1016/j.cemconres.2012.10.007

    Article  Google Scholar 

  34. Senff L, Hotza D, Repette WL, Ferreira VM, Labrincha JA (2010) Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design. Constr Build Mater 24:1432–1437. https://doi.org/10.1016/j.conbuildmat.2010.01.012

    Article  Google Scholar 

  35. Quercia G, Hüsken G, Brouwers HJH (2012) Water demand of amorphous nano silica and its impact on the workability of cement paste. Cem Concr Res 42:344–357. https://doi.org/10.1016/j.cemconres.2011.10.008

    Article  Google Scholar 

  36. Shih JY, Chang TP, Hsiao TC (2006) Effect of nanosilica on characterization of Portland cement composite. Mater Sci Eng A 424:266–274. https://doi.org/10.1016/j.msea.2006.03.010

    Article  Google Scholar 

  37. Zhang MH, Islam J (2012) Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag. Constr Build Mater 29:573–580. https://doi.org/10.1016/j.conbuildmat.2011.11.013

    Article  Google Scholar 

  38. Singh LP, Karade SR, Bhattacharyya SK, Yousuf MM, Ahalawat S (2013) Beneficial role of nanosilica in cement based materials–A review. Constr Build Mater 47:1069–1077. https://doi.org/10.1016/j.conbuildmat.2013.05.052

    Article  Google Scholar 

  39. Isfahani FT, Redaelli E, Lollini F, Li W, Bertolini L (2016) Effects of nanosilica on compressive strength and durability properties of concrete with different water to binder ratios. Adv Mater Sci Eng 2016:1–16. https://doi.org/10.1155/2016/8453567

    Article  Google Scholar 

  40. Berra M, Carassiti F, Mangialardi T, Paolini AE, Sebastiani M (2012) Effects of nanosilica addition on workability and compressive strength of Portland cement pastes. Constr Build Mater 35:666–675. https://doi.org/10.1016/j.conbuildmat.2012.04.132

    Article  Google Scholar 

  41. Haruehansapong S, Pulngern T, Chucheepsakul S (2017) Effect of nanosilica particle size on the water permeability, abrasion resistance, drying shrinkage, and repair work properties of cement mortar containing nano-SiO2. Adv Mater Sci Eng 2017:1–12. https://doi.org/10.1155/2017/4213690

    Article  Google Scholar 

  42. BIS (1980) 2720-part 3, methods of test for soils, part-3- determination of specific gravity. Bureau of Indian standards, New Delhi, India

  43. BIS (1988) 4031-part-4, method of physical tests for hydraulic cement-part 4 determination of consistency of standard cement paste. Bureau of Indian Standards, New Delhi, India

  44. BIS (1988) 4031-part-3, methods of physical tests for hydraulic cement, part 3- determination of soundness. Bureau of Indian Standards, New Delhi, India

  45. BIS (1988) 4031-part-5, methods of physical tests for hydraulic cement, part 5 determination of initial and final setting times. Bureau of Indian Standards, New Delhi, India

  46. BIS (1988) 4031-part-6, methods of physical tests for hydraulic cement, part 6- determination of compressive strength of hydraulic. Bureau of Indian Standards; New Delhi, India

  47. BIS (2019) 10262, Concrete mix proportioning - Guidelines (second revision). Bureau of Indian Standards; New Delhi, India

  48. BIS (1959) 516, Method of tests for strength of concrete. Bureau of Indian Standards, New Delhi, India, (n.d.)

  49. BIS (1999) 5816, Splitting tensile strength of concrete- method of test. Bureau of Indian Standards, New Delhi, India

  50. ASTM (2013) C642, Standard test method for density, absorption, and voids in hardened concrete. ASTM International

  51. ASTM (2019) C1202, Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. ASTM International

  52. ASTM (2011) C1585, Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes. ASTM International

  53. Stefanidou M, Papayianni I (2012) Influence of nano-SiO 2 on the Portland cement pastes. Compos Part B Eng 43(6):2706–2710. https://doi.org/10.1016/j.compositesb.2011.12.015

    Article  Google Scholar 

  54. Madani H, Bagheri A, Parhizkar T (2012) The pozzolanic reactivity of monodispersed nanosilica hydrosols and their influence on the hydration characteristics of Portland cement. Cem Concr Res 42:1563–1570. https://doi.org/10.1016/j.cemconres.2012.09.004

    Article  Google Scholar 

  55. Collins FG, Sanjayan JG (1999) Workability and mechanical properties of alkali activated slag concrete. Cem Concr Res 29:455–458. https://doi.org/10.1016/S0008-8846(98)00236-1

    Article  Google Scholar 

  56. Parveen D, Singhal MT, Junaid BB, Jindal A (2018) Mehta, Mechanical and microstructural properties of fly ash based geopolymer concrete incorporating alccofine at ambient curing. Constr Build Mater 180:298–307. https://doi.org/10.1016/j.conbuildmat.2018.05.286

    Article  Google Scholar 

  57. Narender Reddy A, Meena T (2018) A study on compressive behavior of ternary blended concrete incorporating alccofine. Mater Today Proc 5(5):11356–11363. https://doi.org/10.1016/j.matpr.2018.02.102

    Article  Google Scholar 

  58. Kavitha S, Felix Kala T (2016) Evaluation of strength behavior of self-compacting concrete using alccofine and GGBS as partial replacement of cement. Indian J Sci Technol 9:1–5. https://doi.org/10.17485/ijst/2016/v9i22/93276

    Article  Google Scholar 

  59. Tangadagi RB, Shruthi VA, Ganesh B, Vasudev MV, Nagendra R, Ranganath C (2021) Creep characteristics of high strength self compacting concrete. In recent trends in civil engineering, vol 77. pp 625–635. https://doi.org/10.1007/978-981-15-5195-6_49

    Chapter  Google Scholar 

  60. Shruthi VA, Tangadagi RB, Shwetha KG, Nagendra R, Ranganath C, Ganesh B, Mahesh Kumar CL (2021) Strength and drying shrinkage of high strength self-consolidating concrete. Recent trends in civil engineering, vol 77. pp 615–624

    Chapter  Google Scholar 

  61. Venkatesan B, Venuga M, Dhevasenaa PR, Kannan V (2020) Experimental study on concrete using partial replacement of cement by Alccofine fine aggregate as iron powder. Mater Today Proc 37:2183–2188. https://doi.org/10.1016/j.matpr.2020.07.648

    Article  Google Scholar 

  62. Pacheco-Torgal F, Miraldo S, Ding Y, Labrincha JA (2013) Targeting HPC with the help of nanoparticles: an overview. Constr Build Mater 38:365–370. https://doi.org/10.1016/j.conbuildmat.2012.08.013

    Article  Google Scholar 

  63. Kontoleontos F, Tsakiridis PE, Marinos A, Kaloidas V, Katsioti M (2012) Influence of colloidal nanosilica on ultrafine cement hydration: physicochemical and microstructural characterization. Constr Build Mater 35:347–360. https://doi.org/10.1016/j.conbuildmat.2012.04.022

    Article  Google Scholar 

  64. Lavergne F, Belhadi R, Carriat J, Ben Fraj A (2019) Effect of nano-silica particles on the hydration, the rheology and the strength development of a blended cement paste. Cem Concr Compos 95:42–55. https://doi.org/10.1016/j.cemconcomp.2018.10.007

    Article  Google Scholar 

  65. Björnström J, Martinelli A, Matic A, Börjesson L, Panas I (2004) Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement. Chem Phys Lett 392:242–248. https://doi.org/10.1016/j.cplett.2004.05.071

    Article  Google Scholar 

  66. Teng S, Lim TYD, Sabet Divsholi B (2013) Durability and mechanical properties of high strength concrete incorporating ultra fine ground granulated blast-furnace slag. Constr Build Mater 40:875–881. https://doi.org/10.1016/J.CONBUILDMAT.2012.11.052

    Article  Google Scholar 

  67. Reddy PN, Kavyateja BV (2020) Durability performance of high strength concrete incorporating supplementary cementitious materials. Mater Today Proc 33:66–72. https://doi.org/10.1016/j.matpr.2020.03.149

    Article  Google Scholar 

  68. Mohan A, Mini KM (2018) Strength and durability studies of SCC incorporating silica fume and ultra fine GGBS. Constr Build Mater 171:919–928. https://doi.org/10.1016/j.conbuildmat.2018.03.186

    Article  Google Scholar 

  69. Saranya P, Nagarajan P, Shashikala AP (2018) Eco-friendly GGBS concrete: a state-of-the-art review. IOP Conf Ser Mater Sci Eng 330:012057. https://doi.org/10.1088/1757-899X/330/1/012057

    Article  Google Scholar 

  70. Kumar Mehta PDP, Paulo PD, Monteiro JM (2014) Concrete: microstructure, properties, and materials, 4th edn, Concr Microstruct Prop Mater Fourth ed. pp 95–108. https://www.accessengineeringlibrary.com/content/book/9780071797870 (Accessed 7 October 2021)

  71. Norhasri MSSM, Hamidah MS, Fadzil AM (2017) Applications of using nano material in concrete: a review. Constr Build Mater 133:91–97. https://doi.org/10.1016/j.conbuildmat.2016.12.005

    Article  Google Scholar 

  72. Jalal M, Pouladkhan A, Harandi OF, Jafari D (2015) Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete. Constr Build Mater 94:90–104. https://doi.org/10.1016/j.conbuildmat.2015.07.001

    Article  Google Scholar 

  73. Aydın AC, Nasl VJ, Kotan T (2018) The synergic influence of nano-silica and carbon nano tube on self-compacting concrete. J Build Eng 20:467–475. https://doi.org/10.1016/j.jobe.2018.08.013

    Article  Google Scholar 

  74. Kavyateja BV, Jawahar JG, Sashidhara C (2020) Durability performance of self compacting concrete incorporating alccofine and fly ash. Int J Eng Trans B Appl 33:1522–1528. https://doi.org/10.5829/ije.2020.33.08b.10

    Article  Google Scholar 

  75. Reddy PN, Naqash JA (2019) Development of high early strength in concrete incorporating alccofine and non-chloride accelerator. SN Appl Sci 1:1–11. https://doi.org/10.1007/s42452-019-0790-z

    Article  Google Scholar 

  76. Hou P, Kawashima S, Kong D, Corr DJ, Qian J, Shah SP (2013) Modification effects of colloidal nanoSiO2 on cement hydration and its gel property. Compos Part B Eng 45:440–448. https://doi.org/10.1016/j.compositesb.2012.05.056

    Article  Google Scholar 

  77. Kavyateja BV, Guru Jawahar J, Sashidhar C (2020) Effectiveness of alccofine and fly ash on mechanical properties of ternary blended self compacting concrete. Mater Today Proc 33:73–79. https://doi.org/10.1016/j.matpr.2020.03.152

    Article  Google Scholar 

  78. Said AM, Zeidan MS, Bassuoni MT, Tian Y (2012) Properties of concrete incorporating nano-silica. Constr Build Mater 36:838–844. https://doi.org/10.1016/j.conbuildmat.2012.06.044

    Article  Google Scholar 

  79. Feng GL, Li LY, Kim B, Liu QF (2016) Multiphase modelling of ionic transport in cementitious materials with surface charges. Comput Mater Sci 111:339–349. https://doi.org/10.1016/j.commatsci.2015.09.060

    Article  Google Scholar 

  80. Geng J, Easterbrook D, Liu QF, Li LY (2016) Effect of carbonation on release of bound chlorides in chloride-contaminated concrete. Mag Concr Res 68:353–363. https://doi.org/10.1680/jmacr.15.00234

    Article  Google Scholar 

  81. Miyandehi BM, Feizbakhsh A, Yazdi MA, Feng Liu Q, Yang J, Alipour P (2016) Performance and properties of mortar mixed with nano-CuO and rice husk ash. Cem Concr Compos 74:225–235. https://doi.org/10.1016/j.cemconcomp.2016.10.006

    Article  Google Scholar 

  82. Du H (2019) Properties of ultra-lightweight cement composites with nano-silica. Constr Build Mater 199:696–704. https://doi.org/10.1016/j.conbuildmat.2018.11.225

    Article  Google Scholar 

  83. Narasimha Reddy P, Ahmed Naqash J (2019) Effect of alccofine on mechanical and durability index properties of green concrete. Int J Eng Trans B Appl 32:813–819. https://doi.org/10.5829/ije.2019.32.06c.03

    Article  Google Scholar 

  84. Kewalramani M, Khartabil A (2021) Porosity evaluation of concrete containing supplementary cementitious materials for durability assessment through volume of permeable voids and water immersion conditions. Buildings 11:378. https://doi.org/10.3390/buildings11090378

    Article  Google Scholar 

  85. Sabir BB, Wild S, O’Farrell M (1998) A water sorptivity test for mortar and concrete. Mater Struct Constr 31:568–574. https://doi.org/10.1007/bf02481540

    Article  Google Scholar 

  86. Dinakar P, Babu KG, Santhanam M (2008) Durability properties of high volume fly ash self compacting concretes. Cem Concr Compos 30:880–886. https://doi.org/10.1016/j.cemconcomp.2008.06.011

    Article  Google Scholar 

  87. Jalal M, Mansouri E, Sharifipour M, Pouladkhan AR (2012) Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles. Mater Des 34:389–400. https://doi.org/10.1016/j.matdes.2011.08.037

    Article  Google Scholar 

  88. Du H, Pang SD (2019) High performance cement composites with colloidal nano-silica. Constr Build Mater 224:317–325. https://doi.org/10.1016/J.CONBUILDMAT.2019.07.045

    Article  Google Scholar 

  89. Hou P, Kawashima S, Kong D, Corr DJ, Qian J, Shah SP (2013) Modification effects of colloidal nanoSiO2 on cement hydration and its gel property. Compos Part B Eng 45(1):440–448

    Article  Google Scholar 

  90. Qing Y, Zenan Z, Deyu K, Rongshen C (2007) Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Constr Build Mater 21(3):539–545

    Article  Google Scholar 

  91. Sagar B, MVN S (2021) Mechanical and microstructure characterization of alccofine based high strength concrete. Silicon 14:1–19. https://doi.org/10.1007/S12633-020-00863-X

    Article  Google Scholar 

  92. Munjal P, Hau KK, Hon Arthur CC (2021) Effect of GGBS and curing conditions on strength and microstructure properties of oil well cement slurry. J Build Eng 40:102331. https://doi.org/10.1016/J.JOBE.2021.102331

    Article  Google Scholar 

  93. Rashad AM, Sadek DM (2017) An investigation on Portland cement replaced by high-volume GGBS pastes modified with micro-sized metakaolin subjected to elevated temperatures. Int J Sustain Built Environ 6:91–101. https://doi.org/10.1016/J.IJSBE.2016.10.002

    Article  Google Scholar 

  94. Łukowski P, Salih A (2015) Durability of mortars containing ground granulated blast-furnace slag in acid and sulphate environment. Procedia Eng 108:47–54

    Article  Google Scholar 

  95. Sagar B, Sivakumar MVN (2021) Use of alccofine-1203 in concrete: review on mechanical and durability properties. Int J Sustain Eng. https://doi.org/10.1080/19397038.2021.1970275

    Article  Google Scholar 

  96. Thangapandi K, Anuradha R, Awoyera PO, Gobinath R, Archana N, Berlin M, Oladimeji OB (2021) Durability phenomenon in manufactured sand concrete: effects of zinc oxide and alcofine on behaviour. Silicon 13:1079–1085. https://doi.org/10.1007/s12633-020-00494-2

    Article  Google Scholar 

  97. Reddy PN, Naqash JA (2019) Experimental study on TGA, XRD and SEM analysis of concrete with ultra-fine slag. Int J Eng Trans B Appl 32:679–684. https://doi.org/10.5829/ije.2019.32.05b.09

    Article  Google Scholar 

  98. Nili M, Ehsani A (2015) Investigating the effect of the cement paste and transition zone on strength development of concrete containing nanosilica and silica fume. Mater Des 75:174–183. https://doi.org/10.1016/J.MATDES.2015.03.024

    Article  Google Scholar 

  99. Khan MSH, Kayali O, Troitzsch U (2016) Chloride binding capacity of hydrotalcite and the competition with carbonates in ground granulated blast furnace slag concrete. Mater Struct 49:4609–4619. https://doi.org/10.1617/S11527-016-0810-Z

    Article  Google Scholar 

  100. Kayali O, Khan MSH, Sharfuddin Ahmed M (2012) The role of hydrotalcite in chloride binding and corrosion protection in concretes with ground granulated blast furnace slag. Cem Concr Compos 34:936–945. https://doi.org/10.1016/J.CEMCONCOMP.2012.04.009

    Article  Google Scholar 

  101. Dadsetan S, Bai J (2017) Mechanical and microstructural properties of self-compacting concrete blended with metakaolin, ground granulated blast-furnace slag and fly ash. Constr Build Mater 146:658–667. https://doi.org/10.1016/J.CONBUILDMAT.2017.04.158

    Article  Google Scholar 

  102. Tantawy MA (2017) Effect of high temperatures on the microstructure of cement paste. J Mater Sci Chem Eng 05:33–48. https://doi.org/10.4236/msce.2017.511004

    Article  Google Scholar 

  103. Delgado AH, Paroli RM, Beaudoin JJ (1996) Comparison of IR techniques for the characterization of construction cement minerals and hydrated products. Appl Spectrosc 50:970–976. https://doi.org/10.1366/0003702963905312

    Article  Google Scholar 

  104. Heikal M, El Aleem SA, Morsi WM (2019) Characteristics of blended cements containing nano-silica. HBRC J 9:243–255. https://doi.org/10.1016/j.Hbrcj.2013.09.001

    Article  Google Scholar 

  105. Gao XF, Lo Y, Tam CM, Chung CY (1999) Analysis of the infrared spectrum and microstructure of hardened cement paste. Cem Concr Res 29:805–812. https://doi.org/10.1016/S0008-8846(98)00248-8

    Article  Google Scholar 

  106. Chang CF, Chen JW (2006) The experimental investigation of concrete carbonation depth. Cem Concr Res 36:1760–1767. https://doi.org/10.1016/j.cemconres.2004.07.025

    Article  Google Scholar 

  107. Sha W, Pereira GB (2001) Differential scanning calorimetry study of hydrated ground granulated blast-furnace slag. Cem Concr Res 31:327–329. https://doi.org/10.1016/S0008-8846(00)00472-5

    Article  Google Scholar 

  108. Sha W, Pereira GB (2001) Differential scanning calorimetry study of ordinary Portland cement paste containing metakaolin and theoretical approach of metakaolin activity. Cem Concr Compos 23:455–461. https://doi.org/10.1016/S0958-9465(00)00090-1

    Article  Google Scholar 

  109. Esteves LP (2011) On the hydration of water-entrained cement-silica systems: combined SEM, XRD and thermal analysis in cement pastes. Thermochim Acta 518:27–35. https://doi.org/10.1016/j.tca.2011.02.003

    Article  Google Scholar 

  110. Oner A, Akyuz S (2007) An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cem Concr Compos 29:505–514. https://doi.org/10.1016/j.cemconcomp.2007.01.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financing assistance as a monthly stipend from the Ministry of Human Resource Development, as well as the research facilities provided by the National Institute of Technology throughout this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aabid Hussain Bhat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data Availability

This paper contains all of the data generated or analysed during this investigation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, A.H., Naqash, J.A. An experimental study on properties of concrete incorporating colloidal nanosilica and alccofine. Innov. Infrastruct. Solut. 7, 196 (2022). https://doi.org/10.1007/s41062-022-00800-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-022-00800-4

Keywords

Navigation