Skip to main content
Log in

Experimental studies of sustainable concrete modified with colloidal nanosilica and metakaolin

  • Research Article
  • Published:
Journal of Building Pathology and Rehabilitation Aims and scope Submit manuscript

Abstract

Introduction

Although the use of Colloidal Nanosilica (CNS) has shown significant advantages on strength and durability development of cement composites. However, the impact of CNS with Metakaolin (MK) has not been established well.

Objective

This study presents a novel amalgamation of nano and micro-sized supplementary cementing materials in cement composites. The rationale behind this was to study their effects on strength and durability properties. Besides this, the microstructural investigation was carried out using FESEM and XRD to explore the underlying mechanisms.

Methods

Before casting, the workability of concrete were tested. The mechanical and durability properties including compressive strength, splitting tensile strength, flexural strength, Rapid chloride permeability tests, water absorption, sulfate, and acid attack resistance tests were carried out. Furthermore, besides strength and durability studies, an extensive microstructural investigation was carried under FESEM and XRD to explore the underlying mechanisms.

Results

Twenty different concrete mixtures were designed and explored. The results indicate that the incorporation of CNS and MK in cement composites has increased the admixture demand. The strength of all mixtures increased at various curing ages up to 90 days compared to normal concrete. The maximum increase in strength parameters at 0.44 w/b ratio was observed at 0.45% CNS and 10% MK content. The durability parameters studied like water absorption and RCPT showed an increase in resistance to permeability. Which indicated less porosity of modified mixtures. In acid and sulfate attacks, the normal concrete showed the poorest performance, and CNS and MK enabled some resistance to sulphuric acid and sulfate attack at 120 days. The microstructural characterization conducted during this study has shown that the replacement of cement by MK and CNS has improved the microstructure compared to normal concrete.

Conclusion

The simultaneous incorporation of MK and CNS has reduced workability. In terms of mechanical strength, it is observed that the optimum amount of CNS and MK was 0.45% and 10% respectively. Also, the MK and CNS addition has decreased the water absorption, increased resistance to chloride ion permeability, acid, and sulfate attack compared to normal concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Madlool NA, Saidur R, Hossain MS, Rahim NA (2011) A critical review on energy use and savings in the cement industries. Renew Sustain Energy Rev 15(4):2042–2060. https://doi.org/10.1016/j.rser.2011.01.005

    Article  Google Scholar 

  2. Schneider M, Romer M, Tschudin M, Bolio H (2011) Sustainable cement production-present and future. Cem Concr Res 41(7):642–650. https://doi.org/10.1016/j.cemconres.2011.03.019

    Article  Google Scholar 

  3. Hemalatha T, Ramaswamy A (2017) A review on fly ash characteristics—towards promoting high volume utilization in developing sustainable concrete. J Clean Prod 147:546–559. https://doi.org/10.1016/j.jclepro.2017.01.114

    Article  Google Scholar 

  4. Oner A, Akyuz S (2007) An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cem Concr Compos 29(6):505–514. https://doi.org/10.1016/j.cemconcomp.2007.01.001

    Article  Google Scholar 

  5. Fapohunda C, Akinbile B, Shittu A (2017) Structure and properties of mortar and concrete with rice husk ash as partial replacement of ordinary Portland cement—a review. Int J Sustain Built Environ 6(2):675–692. https://doi.org/10.1016/j.ijsbe.2017.07.004

    Article  Google Scholar 

  6. Moodi F, Ramezanianpour AA, Safavizadeh AS (2011) Evaluation of the optimal process of thermal activation of kaolins. Sci Iran 18(4A):906–912. https://doi.org/10.1016/j.scient.2011.07.011

    Article  Google Scholar 

  7. Dinakar P, Sahoo PK, Sriram G (2013) Effect of metakaolin content on the properties of high strength concrete. Int J Concr Struct Mater 7(3):215–223. https://doi.org/10.1007/s40069-013-0045-0

    Article  Google Scholar 

  8. Glavind M (2009) Sustainability of cement, concrete and cement replacement materials in construction. Sustainability of construction materials. Woodhead Publishing Limited, Sawston, pp 120–147

    Chapter  Google Scholar 

  9. Ilić BR, Mitrović AA, Miličić LR (2010) Thermal treatment of kaolin clay to obtain metakaolin. Hem Ind 64(4):351–356. https://doi.org/10.2298/HEMIND100322014I

    Article  Google Scholar 

  10. Sabir B, Wild S, Bai J (2001) Metakaolin and calcined clays as pozzolans for concrete: a review. Cem Concr Compos 23(6):441–454. https://doi.org/10.1016/S0958-9465(00)00092-5

    Article  Google Scholar 

  11. J. A. Kostuch, M. R. Jones, T. R. Jones (1993) “High performance concretes incorporating metakaolin: a review.” In: International conference pp. 1799–1812.

  12. Cyr M, Trinh M, Husson B, Casaux-Ginestet G (2014) Effect of cement type on metakaolin efficiency. Cem Concr Res 64:63–72. https://doi.org/10.1016/j.cemconres.2014.06.007

    Article  Google Scholar 

  13. Said-mansour M, Kadri E, Kenai S, Ghrici M, Bennaceur R (2011) Influence of calcined kaolin on mortar properties. Constr Build Mater 25(5):2275–2282. https://doi.org/10.1016/j.conbuildmat.2010.11.017

    Article  Google Scholar 

  14. Wild S, Khatib JM, Jones A (1996) Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cem Concr Res 26(10):1537–1544. https://doi.org/10.1016/0008-8846(96)00148-2

    Article  Google Scholar 

  15. Poon CS, Lam L, Kou SC, Wong YL, Wong R (2001) Rate of pozzolanic reaction of metakaolin in high-performance cement pastes. Cem Concr Res 31(9):1301–1306. https://doi.org/10.1016/S0008-8846(01)00581-6

    Article  Google Scholar 

  16. Sanchez F, Sobolev K (2010) Nanotechnology in concrete—a review. Constr Build Mater 24(11):2060–2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014

    Article  Google Scholar 

  17. Balapour M, Joshaghani A, Althoey F (2018) Nano-SiO2 contribution to mechanical, durability, fresh and microstructural characteristics of concrete: a review. Constr Build Mater 181:27–41. https://doi.org/10.1016/j.conbuildmat.2018.05.266

    Article  Google Scholar 

  18. Norhasri MSSM, Hamidah MS, Fadzil AM (2017) Applications of using nano material in concrete: a review. Constr Build Mater 133:91–97. https://doi.org/10.1016/j.conbuildmat.2016.12.005

    Article  Google Scholar 

  19. Shaikh FUA, Supit SWM, Sarker PK (2014) A study on the effect of nano silica on compressive strength of high volume fly ash mortars and concretes. Mater Des 60:433–442. https://doi.org/10.1016/j.matdes.2014.04.025

    Article  Google Scholar 

  20. Isfahani FT, Redaelli E, Lollini F, Li W, Bertolini L (2016) Effects of nanosilica on compressive strength and durability properties of concrete with different water to binder ratios. Adv Mater Sci Eng. https://doi.org/10.1155/2016/8453567

    Article  Google Scholar 

  21. Cai Y, Hou P, Cheng X, Du P, Ye Z (2017) The effects of nanoSiO2 on the properties of fresh and hardened cement-based materials through its dispersion with silica fume. Constr Build Mater 148:770–780. https://doi.org/10.1016/j.conbuildmat.2017.05.091

    Article  Google Scholar 

  22. Du H, Du S, Liu X (2014) Durability performances of concrete with nano-silica. Constr Build Mater 73:705–712. https://doi.org/10.1016/j.conbuildmat.2014.10.014

    Article  Google Scholar 

  23. Ji T (2005) Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO 2. Cement Concr Res 35:1943–1947. https://doi.org/10.1016/j.cemconres.2005.07.004

    Article  Google Scholar 

  24. Zhang MH, Li H (2011) Pore structure and chloride permeability of concrete containing nano-particles for pavement. Constr Build Mater 25(2):608–616. https://doi.org/10.1016/j.conbuildmat.2010.07.032

    Article  MathSciNet  Google Scholar 

  25. Naji Givi A, Abdul Rashid S, Aziz FNA, Salleh MAM (2010) Experimental investigation of the size effects of SiO2 nano-particles on the mechanical properties of binary blended concrete. Compos B Eng 41(8):673–677. https://doi.org/10.1016/j.compositesb.2010.08.003

    Article  Google Scholar 

  26. Hou P, Kawashima S, Kong D, Corr DJ, Qian J, Shah SP (2013) Modification effects of colloidal nanoSiO2 on cement hydration and its gel property. Compos B Eng 45(1):440–448. https://doi.org/10.1016/j.compositesb.2012.05.056

    Article  Google Scholar 

  27. Luo Z, Li W, Li P, Wang K, Shah SP (2021) Investigation on effect of nanosilica dispersion on the properties and microstructures of fly ash-based geopolymer composite. Constr Build Mater 282:122690. https://doi.org/10.1016/j.conbuildmat.2021.122690

    Article  Google Scholar 

  28. Quercia G, Hüsken G, Brouwers HJH (2012) Cement and concrete research water demand of amorphous nano silica and its impact on the workability of cement paste. Cem Concr Res 42(2):344–357. https://doi.org/10.1016/j.cemconres.2011.10.008

    Article  Google Scholar 

  29. Shih J, Chang T, Hsiao T (2005) Effect of nanosilica on characterization of Portland cement composite. Mater Sci Eng A 424:266–274. https://doi.org/10.1016/j.msea.2006.03.010

    Article  Google Scholar 

  30. BIS (2013) IS 8112-2013: Ordinary Portland cement, 43 grade-specification

  31. Indian Standard IS 2720 (Part 3) (1980) Methods of test for soils, determination of specific gravity, fine, medium and coarse grained soils, New Delhi

  32. BIS (1998) IS: 4031 (4): Methods of physical tests for hydraulic cement. Part 4: Determination of consistency of standard cement paste

  33. BIS (Bureau of Indian Standards) (1988) IS: 4031 (3) Methods of physical tests for hydraulic cement, part 3: determination of soundness

  34. BIS (1988) IS 4031 (5): Methods of physical tests for hydraulic cement. Part-5: Determination of initial and final setting times

  35. BIS (1989) IS: 4031 (6): Methods of physical tests for hydraulic cement. Part 6: Determination of compressive strength of hydraulic cement other than masonry cement

  36. BIS, I. 10262–2019 (2019) Specification for mix design guidelines for concrete. Bureau of Indian Standards, New Delhi

  37. BIS, I. (1959) IS 1199-1959. Methods of Sampling and Analysis of Concrete, Bureau of Indian Standards, New Delhi, India

  38. BIS 516 (2004) IS 516-1959: Method of tests for strength of concrete

  39. BIS, I. (1999) 5816–1999. Specification for Splitting Tensile strength of Concrete–Method of Test, Bureau of Indian Standards, New Delhi, India

  40. AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) (2012) Standard test method for electrical indication of concrete's ability to resist chloride ion penetration. ASTM C-1202. Annual book of ASTM Standards

  41. Bai J, Wild S, Sabir BB, Kinuthia JM (1999) Workability of concrete incorporating pulverized fuel ash and metakaolin. Mag Concr Res 51(3):207–216. https://doi.org/10.1680/macr.1999.51.3.207

    Article  Google Scholar 

  42. Lenka S, Panda KC (2017) Effect of metakaolin on the properties of conventional and self compacting concrete. Adv Concr Constr 5(1):31–48. https://doi.org/10.12989/acc.2017.5.1.31

    Article  Google Scholar 

  43. Yu R, Spiesz P, Brouwers HJH (2014) Effect of nano-silica on the hydration and microstructure development of ultra-high performance concrete (UHPC) with a low binder amount. Constr Build Mater 65:140–150. https://doi.org/10.1016/j.conbuildmat.2014.04.063

    Article  Google Scholar 

  44. Chong JZ, Sutan NM, Yakub I (2013) Characterization of early pozzolanic reaction of calcium hydroxide and calcium silicate hydrate for nanosilica modified cement paste. J Civ Eng Sci Technol 4(3):6–10. https://doi.org/10.33736/jcest.120.2013

    Article  Google Scholar 

  45. Janotka I, Puertas F, Palacios M, Kuliffayová M, Varga C (2010) Metakaolin sand—blended-cement pastes: rheology, hydration process and mechanical properties. Constr Build Mater 24(5):791–802. https://doi.org/10.1016/j.conbuildmat.2009.10.028

    Article  Google Scholar 

  46. Duan P, Shui Z, Chen W, Shen C (2013) Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete. Constr Build Mater 44:1–6. https://doi.org/10.1016/j.conbuildmat.2013.02.075

    Article  Google Scholar 

  47. Zahedi M, Ramezanianpour AA, Ramezanianpour AM (2015) Evaluation of the mechanical properties and durability of cement mortars containing nanosilica and rice husk ash under chloride ion penetration. Constr Build Mater 78:354–361. https://doi.org/10.1016/j.conbuildmat.2015.01.045

    Article  Google Scholar 

  48. Khatib JM (2008) Metakaolin concrete at a low water to binder ratio. Constr Build Mater 22(8):1691–1700. https://doi.org/10.1016/j.conbuildmat.2007.06.003

    Article  MathSciNet  Google Scholar 

  49. Uddin F, Shaikh A, Hosan A (2019) Effect of nano silica on compressive strength and microstructures of high volume blast furnace slag and high volume blast furnace slag- fl y ash blended pastes. Sustain Mater Technol 17:e00111. https://doi.org/10.1016/j.susmat.2019.e00111

    Article  Google Scholar 

  50. Ding JT, Li Z (2002) Effects of metakaolin and silica fume on properties of concrete. ACI Mater J 99(4):393–398. https://doi.org/10.14359/12222

    Article  Google Scholar 

  51. Pul S (2008) Experimental investigation of tensile behaviour of high strength concrete. Indian J Eng Mater Sci 15(6):467–472

    Google Scholar 

  52. Raphael JM (1984) Tensile strength of concrete. J Am Concr Inst 81(2):158–165. https://doi.org/10.1007/978-3-642-41714-6_200519

    Article  Google Scholar 

  53. Carrasquillo RL, Nilson AH, Slate FO (1981) Properties of high strength concrete subject to short-term loads. J Am Concr Inst 78(3):171–178. https://doi.org/10.14359/6914

    Article  Google Scholar 

  54. Ahmed M, El Hadi KM, Hasan MA, Mallick J, Ahmed A (2014) Evaluating the co-relationship between concrete flexural tensile strength and compressive strength. Int J Struct Eng 5(2):115–131. https://doi.org/10.1504/IJSTRUCTE.2014.060902

    Article  Google Scholar 

  55. ACI committee 318 (2011) Building code requirements for structural concrete and commentary (ACI 318M–11). American Concrete Institute, Farmington Hills

    Google Scholar 

  56. Indian Standard (2000) Plain and reinforced concrete-code of practice. New Delhi: Bureau of Indian Standards

  57. Kirkbridge TW (1997) Structural use of concrete—part 1: code of practice for design and construction

  58. Concrete structures standard (2006) NZS 3101: 2006. Standards Association, Wellington, NZ

  59. Singh LP, Goel A, Bhattachharyya SK, Ahalawat S, Sharma U, Mishra G (2015) Effect of morphology and dispersibility of silica nanoparticles on the mechanical behaviour of cement mortar. Int J Concr Struct Mater 9(2):207–217. https://doi.org/10.1007/s40069-015-0099-2

    Article  Google Scholar 

  60. Nas M, Kurbetci S (2018) Durability properties of concrete containing metakaolin. Adv Concr Constr 6(2):159–175. https://doi.org/10.12989/acc.2018.6.2.159

    Article  Google Scholar 

  61. Dhinakaran G, Thilgavathi S, Venkataramana J (2012) Compressive strength and chloride resistance of metakaolin concrete. KSCE J Civ Eng 16(7):1209–1217. https://doi.org/10.1007/s12205-012-1235-z

    Article  Google Scholar 

  62. Talero R (2012) Synergic effect of Friedel’s salt from pozzolan and from OPC co-precipitating in a chloride solution. Constr Build Mater 33:164–180. https://doi.org/10.1016/j.conbuildmat.2011.12.040

    Article  Google Scholar 

  63. Farnam Y, Wiese A, Bentz D, Davis J, Weiss J (2015) Damage development in cementitious materials exposed to magnesium chloride deicing salt. Constr Build Mater 93:384–392. https://doi.org/10.1016/j.conbuildmat.2015.06.004

    Article  Google Scholar 

  64. Qiao C, Suraneni P, Weiss J (2018) Damage in cement pastes exposed to NaCl solutions. Constr Build Mater 171:120–127. https://doi.org/10.1016/j.conbuildmat.2018.03.123

    Article  Google Scholar 

  65. Du H, Du S, Liu X (2014) Durability performances of concrete with nano-silica. Constr Build Mater 73(December):705–712. https://doi.org/10.1016/j.conbuildmat.2014.10.014

    Article  Google Scholar 

  66. Güneyisi E, Özturan T (2012) Strength development of concretes incorporated with metakaolin and different types of calcined kaolins. Constr Build Mater 37:766–774. https://doi.org/10.1016/j.conbuildmat.2012.07.077

    Article  Google Scholar 

  67. Madandoust R, Mousavi SY (2012) Fresh and hardened properties of self-compacting concrete containing metakaolin. Constr Build Mater 35:752–760. https://doi.org/10.1016/j.conbuildmat.2012.04.109

    Article  Google Scholar 

  68. Karaog S, Mermerdas K, Güneyisi E, Gesog M (2012) Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes. Constr Build Mater 34:120–130. https://doi.org/10.1016/j.conbuildmat.2012.02.017

    Article  Google Scholar 

  69. Wild S, Khatib JM (1997) Pergamon PI1 SOOOS-8846(96)00187-l Portlandite consumption in metakaolin cement pastes and mortars. Cem End Concr Res 27(1):137–146

    Article  Google Scholar 

  70. Beulah, Prahallada MC (2012) Effect of replacement of cement by metakalion on the properties of high performance concrete subjected to acid attack. i-manager’s J Civ Eng 2(3):14–21. https://doi.org/10.2634/jce.2.3.1934

    Article  Google Scholar 

  71. Al-Akhras NM (2006) Durability of metakaolin concrete to sulfate attack. Cem Concr Res 36(9):1727–1734. https://doi.org/10.1016/j.cemconres.2006.03.026

    Article  Google Scholar 

  72. Khatib JM, Wild S (1998) Sulphate resistance of metakaolin mortar. Cem Concr Res 28(1):83–92. https://doi.org/10.1016/S0008-8846(97)00210-X

    Article  Google Scholar 

  73. Khatib JM, Hibbert JJ (2005) Selected engineering properties of concrete incorporating slag and metakaolin. Constr Build Mater 19(6):460–472. https://doi.org/10.1016/j.conbuildmat.2004.07.017

    Article  Google Scholar 

  74. Madani H, Bagheri A, Parhizkar T (2012) The pozzolanic reactivity of monodispersed nanosilica hydrosols and their influence on the hydration characteristics of Portland cement. Cem Concr Res 42(12):1563–1570. https://doi.org/10.1016/j.cemconres.2012.09.004

    Article  Google Scholar 

  75. Samimi K, Shirzadi Javid AA (2021) Magnesium sulfate (MgSO4) attack and chloride isothermal effects on the self-consolidating concrete containing metakaolin and zeolite. Iran J Sci Technol Trans Civ Eng 45(1):165–180. https://doi.org/10.1007/s40996-020-00398-6

    Article  Google Scholar 

  76. Ramlochan T, Thomas M (2000) Effect of metakaolin on external sulfate attack. American Concrete Institute, ACI Special Publication, SP-192, pp 239–251. https://doi.org/10.14359/5752

  77. Al-Akhras NM (2006) Durability of metakaolin concrete to sulfate attack. Cem Concr Res 36(9):1727–1734. https://doi.org/10.1016/j.cemconres.2006.03.026

    Article  Google Scholar 

  78. Ghafari E, Arezoumandi M, Costa H, Júlio E (2015) Influence of nano-silica addition on durability of UHPC. Constr Build Mater 94:181–188. https://doi.org/10.1016/j.conbuildmat.2015.07.009

    Article  Google Scholar 

  79. Qin Z, Ma C, Zheng Z, Long G, Chen B (2020) Effects of metakaolin on properties and microstructure of magnesium phosphate cement. Constr Build Mater 234:117353. https://doi.org/10.1016/j.conbuildmat.2019.117353

    Article  Google Scholar 

  80. Ramezanianpour AA, Jovein HB (2012) Influence of metakaolin as supplementary cementing material on strength and durability of concretes. Constr Build Mater 30:470–479. https://doi.org/10.1016/j.conbuildmat.2011.12.050

    Article  Google Scholar 

  81. Dinakar P, Sahoo PK, Sriram G (2013) Effect of metakaolin content on the properties of high strength concrete. Int J Concr Struct Mater 7(3):215–223. https://doi.org/10.1007/s40069-013-0045-0

    Article  Google Scholar 

  82. Barbhuiya S, Chow P, Memon S (2015) Microstructure, hydration and nanomechanical properties of concrete containing metakaolin. Constr Build Mater 95:696–702. https://doi.org/10.1016/j.conbuildmat.2015.07.101

    Article  Google Scholar 

  83. Kadri EH, Kenai S, Ezziane K, Siddique R, De Schutter G (2011) Influence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortar. Appl Clay Sci 53(4):704–708. https://doi.org/10.1016/j.clay.2011.06.008

    Article  Google Scholar 

Download references

Acknowledgements

Authors are highly grateful and appreciate the Ministry of Human Resource Development's funding support and are thankful to National Institute of Technology for providing the laboratory facilities during this research work.

Funding

This study was supported by Ministry of Human Resource Development.

Author information

Authors and Affiliations

Authors

Contributions

AHB: conceptualization, methodology, experimental investigation, writing. JAN: review and editing.

Corresponding author

Correspondence to Aabid Hussain Bhat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, A.H., Naqash, J.A. Experimental studies of sustainable concrete modified with colloidal nanosilica and metakaolin. J Build Rehabil 7, 18 (2022). https://doi.org/10.1007/s41024-021-00157-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41024-021-00157-8

Keywords

Navigation