Skip to main content
Log in

Physical and Rheological characterization of modified bitumen by NBR/EVA association

  • Technical paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

This paper presents the use of NBR waste (nitrite butadiene rubber) in association with commercial polymer EVA (ethylene vinyl acetate) in the bitumen modification in order to improve its physical and rheological properties. Experimental tests such as penetration, softening point, and dynamic shear rheometer (DSR) at high in service temperature were performed in the conventional and modified binders. The results showed, an improvement in physical properties: decrease in penetrability and increase in softening point, and an improvement in the rheological characteristics such as shear modulus G*, phase angle δ and rutting resistance at high in service temperature represented by the parameter G*/sinδ. The results also showed a logical consistency in the association NBR/EVA, modified binders B + 5%[NBR/EVA] gave intermediate results between the two binders containing 5%NBR and 5%EVA separately. These performances improve when the EVA proportion increases in this association. The use of this association is not only to improve the bitumen characteristics, but also to minimize the proportions of NBR waste at landfills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ziari H, Babagoli R, Akbari A (2015) Investigation of fatigue and rutting performance of hot mix asphalt mixtures prepared by bentonite-modified bitumen. Road Mater Pavement Des 16:101–118. https://doi.org/10.1080/14680629.2014.982156

    Article  Google Scholar 

  2. Javilla B, Mo L, Hao F et al (2017) Significance of initial rutting in prediction of rutting development and characterization of asphalt mixtures. Constr Build Mater 153:157–164. https://doi.org/10.1016/j.conbuildmat.2017.07.007

    Article  Google Scholar 

  3. Çeloğlu ME, Yalçın E, Kök BV et al (2018) Effects of different bitumen modifiers on the rutting and cracking resistance of hot mix asphalts. Int J Pavement Eng. https://doi.org/10.1080/10298436.2018.1506122

    Article  Google Scholar 

  4. Ji X, Zheng N, Hou Y, Niu S (2013) Application of asphalt mixture shear strength to evaluate pavement rutting with accelerated loading facility (ALF). Constr Build Mater 41:1–8. https://doi.org/10.1016/j.conbuildmat.2012.11.111

    Article  Google Scholar 

  5. Munera JC, Ossa EA (2014) Polymer modified bitumen: optimization and selection. Mater Des 1980–2015(62):91–97. https://doi.org/10.1016/j.matdes.2014.05.009

    Article  Google Scholar 

  6. Haddadi S, Ghorbel E, Laradi N (2008) Effects of the manufacturing process on the performances of the bituminous binders modified with EVA. Constr Build Mater 22:1212–1219. https://doi.org/10.1016/j.conbuildmat.2007.01.028

    Article  Google Scholar 

  7. Yildirim Y (2007) Polymer modified asphalt binders. Constr Build Mater 21:66–72. https://doi.org/10.1016/j.conbuildmat.2005.07.007

    Article  Google Scholar 

  8. Lesueur D (2009) The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Adv Coll Interface Sci 145:42–82. https://doi.org/10.1016/j.cis.2008.08.011

    Article  Google Scholar 

  9. Mangiafico S, Di Benedetto H, Sauzéat C et al (2016) Effect of colloidal structure of bituminous binder blends on linear viscoelastic behaviour of mixtures containing Reclaimed Asphalt Pavement. Mater Des 111:126–139. https://doi.org/10.1016/j.matdes.2016.07.124

    Article  Google Scholar 

  10. Navarro FJ, Partal P, García-Morales M et al (2009) Bitumen modification with reactive and non-reactive (virgin and recycled) polymers: a comparative analysis. J Ind Eng Chem 15:458–464. https://doi.org/10.1016/j.jiec.2009.01.003

    Article  Google Scholar 

  11. Sengoz B, Isikyakar G (2008) Evaluation of the properties and microstructure of SBS and EVA polymer modified bitumen. Constr Build Mater 22:1897–1905. https://doi.org/10.1016/j.conbuildmat.2007.07.013

    Article  Google Scholar 

  12. Airey GD (2002) Rheological evaluation of ethylene vinyl acetate polymer modified bitumens. Constr Build Mater 16:473–487. https://doi.org/10.1016/S0950-0618(02)00103-4

    Article  Google Scholar 

  13. Airey GD (2004) Styrene butadiene styrene polymer modification of road bitumens. J Mater Sci 39:951–959. https://doi.org/10.1023/B:JMSC.0000012927.00747.83

    Article  Google Scholar 

  14. Brovelli C, Hilliou L, Hemar Y et al (2013) Rheological characteristics of EVA modified bitumen and their correlations with bitumen concrete properties. Constr Build Mater 48:1202–1208. https://doi.org/10.1016/j.conbuildmat.2013.07.032

    Article  Google Scholar 

  15. Ameri M, Mansourian A, Sheikhmotevali AH (2013) Laboratory evaluation of ethylene vinyl acetate modified bitumens and mixtures based upon performance related parameters. Constr Build Mater 40:438–447. https://doi.org/10.1016/j.conbuildmat.2012.09.109

    Article  Google Scholar 

  16. Khadivar A, Kavussi A (2013) Rheological characteristics of SBR and NR polymer modified bitumen emulsions at average pavement temperatures. Constr Build Mater 47:1099–1105. https://doi.org/10.1016/j.conbuildmat.2013.05.093

    Article  Google Scholar 

  17. Soudani K, Cerezo V, Haddadi S (2016) Rheological characterization of bitumen modified with waste nitrile rubber (NBR). Constr Build Mater 104:126–133. https://doi.org/10.1016/j.conbuildmat.2015.12.029

    Article  Google Scholar 

  18. Köfteci S, Ahmedzade P, Kultayev B (2014) Performance evaluation of bitumen modified by various types of waste plastics. Constr Build Mater 73:592–602. https://doi.org/10.1016/j.conbuildmat.2014.09.067

    Article  Google Scholar 

  19. Nejad FM, Aghajani P, Modarres A, Firoozifar H (2012) Investigating the properties of crumb rubber modified bitumen using classic and SHRP testing methods. Constr Build Mater 26:481–489. https://doi.org/10.1016/j.conbuildmat.2011.06.048

    Article  Google Scholar 

  20. Azam AM, El-Badawy SM, Alabasse RM (2019) Evaluation of asphalt mixtures modified with polymer and wax. Innov Infrastruct Solut 4:43. https://doi.org/10.1007/s41062-019-0230-3

    Article  Google Scholar 

  21. Alghrafy YM, AbdAlla E-SM, El-Badawy SM (2021) Rheological properties and aging performance of sulfur extended asphalt modified with recycled polyethylene waste. Constr Build Mater 273:121771. https://doi.org/10.1016/j.conbuildmat.2020.121771

    Article  Google Scholar 

  22. Bensaada A, Soudani K, Haddadi S (2021) Effects of short-term aging on the physical and rheological properties of plastic waste-modified bitumen. Innov Infrastruct Solut 6:135. https://doi.org/10.1007/s41062-021-00471-7

    Article  Google Scholar 

  23. Yan K, Xu H, You L (2015) Rheological properties of asphalts modified by waste tire rubber and reclaimed low density polyethylene. Constr Build Mater 83:143–149. https://doi.org/10.1016/j.conbuildmat.2015.02.092

    Article  Google Scholar 

  24. Ahmedzade P (2013) The investigation and comparison effects of SBS and SBS with new reactive terpolymer on the rheological properties of bitumen. Constr Build Mater 38:285–291. https://doi.org/10.1016/j.conbuildmat.2012.07.090

    Article  Google Scholar 

  25. Yao Z, Zhang J, Gao F et al (2018) Integrated utilization of recycled crumb rubber and polyethylene for enhancing the performance of modified bitumen. Constr Build Mater 170:217–224. https://doi.org/10.1016/j.conbuildmat.2018.03.080

    Article  Google Scholar 

  26. NF EN 12591 (2009) Bitumen and bituminous binders - Specifications for paving grade bitumens - Bitumes et liants bitumineux, AFNOR

  27. Lu X, Isacsson U (2000) Modification of road bitumens with thermoplastic polymers. Polym Testing 20:77–86. https://doi.org/10.1016/S0142-9418(00)00004-0

    Article  Google Scholar 

  28. Sengoz B, Topal A, Isikyakar G (2009) Morphology and image analysis of polymer modified bitumens. Constr Build Mater 23:1986–1992. https://doi.org/10.1016/j.conbuildmat.2008.08.020

    Article  Google Scholar 

  29. Luo W, Chen J (2011) Preparation and properties of bitumen modified by EVA graft copolymer. Constr Build Mater 25:1830–1835. https://doi.org/10.1016/j.conbuildmat.2010.11.079

    Article  Google Scholar 

  30. NF EN 1426 (2018) Bitumen and bituminous binders - Determination of needle penetration - Bitumes et liants bitumineux, AFNOR

  31. NF EN 1427 (2018) Bitumen and bituminous binders - Determination of the softening point - Ring and Ball method - Bitumes et liants bitumineux, AFNOR

  32. AASHTO T 315–10 (2010) Standard method of test for determining the rheological properties of asphalt binder using a dynamic shear rheometr (DSR). American Association of State Highway and Transporation Officials

  33. Subhy A (2017) Advanced analytical techniques in fatigue and rutting related characterisations of modified bitumen: literature review. Constr Build Mater 156:28–45. https://doi.org/10.1016/j.conbuildmat.2017.08.147

    Article  Google Scholar 

  34. Bahia HU, Anderson DA (1995) Strategic highway research program binder rheological parameters: background and comparison with conventional properties. Transp Res Rec 1488:32–39

    Google Scholar 

  35. SHRP-A-410 (1994) Superior performing asphalt pavements, superpave: the product of the SHRP asphalt research program. Strategic Highway Research Program, National Research Council, Washington, DC

  36. Chen J-S, Tsai C-J (1999) How good are linear viscoelastic properties of asphalt binder to predict rutting and fatigue cracking? J Mater Eng Perform 8:443–449. https://doi.org/10.1361/105994999770346747

    Article  Google Scholar 

  37. SHRP-A-369 (1994) Binder characterization and evaluation. Volume 3: Physical Characterization. Strategic Highway Research Program, National Research Council, Washington, D.C.

  38. Airey GD, Rahimzadeh B (2004) Combined bituminous binder and mixture linear rheological properties. Constr Build Mater 18:535–548. https://doi.org/10.1016/j.conbuildmat.2004.04.008

    Article  Google Scholar 

  39. Gama DA, Rosa Júnior JM, de Melo TJA, Rodrigues JKG (2016) Rheological studies of asphalt modified with elastomeric polymer. Constr Build Mater 106:290–295. https://doi.org/10.1016/j.conbuildmat.2015.12.142

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Environment, Water, Geomechanics and Structures Laboratory (LEEGO) of the USTHB and the Pavements and Bituminous Materials Laboratory (LCMB) of the ÉTS (Montréal, Canada) for their support and thank Pr Alan Carter for his help.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madani Chinoun.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinoun, M., Soudani, K. & Haddadi, S. Physical and Rheological characterization of modified bitumen by NBR/EVA association. Innov. Infrastruct. Solut. 7, 108 (2022). https://doi.org/10.1007/s41062-021-00709-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-021-00709-4

Keywords

Navigation