Skip to main content

Advertisement

Log in

Compressive strength prediction model of high-strength concrete with silica fume by destructive and non-destructive technique

  • Technical paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

The study proposes a new model for estimating the compressive strength of high-strength concrete using destructive and non-destructive testing. The effect of silica fume replacement level and its cementing efficiency factor on compressive strength and ultrasonic pulse velocity (UPV) were experimentally examined. In the present work, the cementing efficiency factor (k) for silica fume at different percentage replacement level has been assumed, and at the constant water-to-binder ratio, the compressive strength has been obtained. An exponential relationship is proposed between UPV and compressive strength with a high correlation coefficient. A statistically noteworthy model with a high correlation coefficient R2 > 0.90 is established to study the influence of the variables (%SF and k) on UPV results. Finally, the two proposed models were amalgamated to develop a new model to predict the 28-day compressive strength of high-strength concrete. The validity of the model has been verified with the results obtained by different researchers on different types of specimens. The proposed new model is for the strength range of the 40–75 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. ACI Committee 318 (1995) Building code requirements for structural concrete (ACI 318-95) and commentary (ACI 318R-95). Am Concr Inst 552:503

  2. C. CEB-FIP, Model Code 1990, Com. Euro-International Du Beton, Paris. (1991) 87–109. https://doi.org/10.1680/ceb-fipmc1990.35430

  3. Shen D, Wen C, Zhu P, Wu Y, Yuan J (2020) Influence of Barchip fiber on early-age autogenous shrinkage of high strength concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.119223

    Article  Google Scholar 

  4. Shen D, Li C, Feng Z, Wen C, Ojha B (2019) Influence of strain rate on bond behavior of concrete members reinforced with basalt fiber-reinforced polymer rebars. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.116755

    Article  Google Scholar 

  5. Shen D, Wen C, Zhu P, Li M, Ojha B, Li C (2020) Bond behavior between basalt fiber-reinforced polymer bars and concrete under cyclic loading. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.119518

    Article  Google Scholar 

  6. Villar-Cociña E, Rodier L, Savastano H, Lefrán M, Rojas MF (2020) A comparative study on the Pozzolanic activity between bamboo leaves ash and silica fume: kinetic parameters. Waste Biomass Valorization 1–8. https://doi.org/10.1007/s12649-018-00556-y

  7. Sharaky IA, Megahed FA, Seleem MH, Badawy AM (2019) The influence of silica fume, nano silica and mixing method on the strength and durability of concrete. SN Appl Sci 6:575–584. https://doi.org/10.1007/s42452-019-0621-2

    Article  Google Scholar 

  8. Güneyisi E, Gesoǧlu M, Karaoǧlu S, Mermerdaş K (2012) Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes. Constr Build Mater 34:120–130. https://doi.org/10.1016/j.conbuildmat.2012.02.017

    Article  Google Scholar 

  9. Siddique R, Khan MI (2011) Supplementary cementing materials. In: Springer Sci. Business, Media, pp 67–120

  10. Wang F, Li S (2012) Effect of silica fume on workability and water impermeability of concrete. Appl Mech Mater 238:157–160. https://doi.org/10.4028/www.scientific.net/AMM.238.157

    Article  Google Scholar 

  11. Mohan A, Mini KM (2018) Strength and durability studies of SCC incorporating silica fume and ultra fine GGBS. Constr Build Mater 171:919–928. https://doi.org/10.1016/j.conbuildmat.2018.03.186

    Article  Google Scholar 

  12. Khayat KH, Yahia A, Sayed M (2008) Effect of supplementary cementitious materials on rheological properties, bleeding, and strength of structural grout. ACI Mater J 35:842–849. https://doi.org/10.14359/20200

    Article  Google Scholar 

  13. Maage M (1989) Efficiency factors for condensed silica fume in concrete. ACI Spec Publ 114:783–798

    Google Scholar 

  14. Bhanja S, Sengupta B (2002) Investigations on the compressive strength of silica fume concrete using statistical methods. Cem Concr Res 32:1391–1394. https://doi.org/10.1016/S0008-8846(02)00787-1

    Article  Google Scholar 

  15. Albattat RAI, Jamshidzadeh Z, Alasadi AKR (2020) Assessment of compressive strength and durability of silica fume-based concrete in acidic environment. Innov Infrastruct Solut 5:20. https://doi.org/10.1007/s41062-020-0269-1

    Article  Google Scholar 

  16. Smith IA (1967) The design of fly ash concretes. Proc Inst Civ Eng 36:769–790. https://doi.org/10.1680/iicep.1967.8472

    Article  Google Scholar 

  17. Jahren P (1983) Use of silica fume in concrete. ACI Spec Publ 79:677–694. https://doi.org/10.14359/6715

    Article  Google Scholar 

  18. Sellevold EJ, Radjy FF (1983) Condensed silica fume (Microsilica) in concrete: water demand and strength development. Spec Publ 79:677–694

    Google Scholar 

  19. Gopalan MK, Hague MN (1985) Design of flyash concrete. Cem Concr Res 15:694–702. https://doi.org/10.1016/0008-8846(85)90071-7

    Article  Google Scholar 

  20. Babu KG, Rao GSN (1993) Efficiency of fly ash in concrete. Cem Concr Compos 15:223–229. https://doi.org/10.1016/0958-9465(93)90025-5

    Article  Google Scholar 

  21. Feret R (1892) On the compactness of hydraulic mortars. Memoirs and documents relating to the art of constructions at the service of the engineer. Ann Des Ponts Chaussées. 2nd semest 5–161

  22. Bolomy (1927) Durcissemenr des morriers er betons. Bull Tech Suisse Rom 16–24

  23. Abrams DA (1918) Design of Concrete Mixtures, Bull. No. 1, Struct. Mater. Lab. Lewis Institute, Chicago, p 20

  24. Slanička Š (1991) The influence of condensed silica fume on the concrete strength. Cem Concr Res 21:462–470. https://doi.org/10.1016/0008-8846(91)90094-X

    Article  Google Scholar 

  25. Ganesh Babu K, Surya Prakash PV (1995) Efficiency of silica fume in concrete. Cem Concr Res 25:1273–1283. https://doi.org/10.1016/0008-8846(95)00120-2

    Article  Google Scholar 

  26. Loland K (1981) Silica concrete (Norwegian). In: J Nord Concr Fed

  27. Fagerlund G (1981) Definition of water/cement ratio using silica fume Swedish. In: Intern. Cem Rep

  28. Malathy R, Subramanian K (2007) Efficiency factor for silica fume & metakaoline at various replacement levels. Singapore Concr Inst (2007). http://cipremier.com/100032037%5Cnwww.cipremier.com

  29. Yoshitake I, Inoue S, Miyamoto K (2019) Strength properties of durable concrete made with various alternative. Interdepend Between Struct Eng Constr Manag 1–6

  30. Khan AN, Magar RB, Chore HS (2018) Efficiency factor of supplementary cementitious materials: a state of art. Int J Optim Civ Eng 8:247–253

    Google Scholar 

  31. Li LG, Zheng JY, Ng PL, Zhu J, Kwan AKH (2019) Cementing efficiencies and synergistic roles of silica fume and nano-silica in sulphate and chloride resistance of concrete. Constr Build Mater 223:965–975. https://doi.org/10.1016/j.conbuildmat.2019.07.241

    Article  Google Scholar 

  32. Sharaky IA, Megahed FA, Seleem MH, Badawy AM (2019) The influence of silica fume, nano silica and mixing method on the strength and durability of concrete. SN Appl Sci 1:1–10. https://doi.org/10.1007/s42452-019-0621-2

    Article  Google Scholar 

  33. Pereira N, Romão X (2016) Material strength safety factors for the seismic safety assessment of existing RC buildings. Constr Build Mater 119:319–328. https://doi.org/10.1016/j.conbuildmat.2016.05.055

    Article  Google Scholar 

  34. Breysse D (2012) Nondestructive evaluation of concrete strength: an historical review and a new perspective by combining NDT methods. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2011.12.103

    Article  Google Scholar 

  35. Lin Y, Lai CP, Yen T (2003) Prediction of ultrasonic pulse velocity (UPV) in concrete. ACI Mater J 100:21–28. https://doi.org/10.14359/12459

    Article  Google Scholar 

  36. Ju M, Park K, Oh H (2017) Estimation of compressive strength of high strength concrete using non-destructive technique and concrete core strength. Appl Sci. https://doi.org/10.3390/app7121249

    Article  Google Scholar 

  37. Khan SRM, Noorzaei J, Kadir MRA, Waleed AMT, Jaafar MS (2007) UPV method for strength detection of high performance concrete. Struct Surv 25:61–73

    Article  Google Scholar 

  38. Atici U (2011) Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2011.01.156

    Article  Google Scholar 

  39. Najim KB (2017) Strength evaluation of concrete structures using ISonReb linear regression models: laboratory and site (case studies) validation. Constr Build Mater 149:639–647. https://doi.org/10.1016/j.conbuildmat.2017.04.162

    Article  Google Scholar 

  40. Atahan HN, Oktar ON, Tademir MA (2011) Factors determining the correlations between high strength concrete properties. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2010.11.005

    Article  Google Scholar 

  41. Qasrawi HY (2000) Concrete strength by combined nondestructive methods simply and reliably predicted. Cem Concr Res. https://doi.org/10.1016/S0008-8846(00)00226-X

    Article  Google Scholar 

  42. IS: 8112 (1989) Ordinary Portland cement, 43 grade-Specification. Bur. Indian Stand., New Delhi

  43. IS:383 (2016) Specification for coarse and fine aggregates from natural sources for concrete. Bur. Indian Stand., New Delhi, India, pp 1–18

  44. IS:516 (2004) Method of tests for strength of concrete. Bur. Indian Stand., New Delhi, India

  45. Biswas R, Rai B (2020) Effect of cementing efficiency factor on the mechanical properties of concrete incorporating silica fume. J Struct Integr Maint 5:190–203. https://doi.org/10.1080/24705314.2020.1765269

    Article  Google Scholar 

  46. IS:10262, IS:10262-2009 (2009) Indian standards recommended Guidelines for concrete mix design. In: Bur. Indian Stand., New Delhi, India

  47. IS: 1199 (1959) Methods of sampling and analysis of concrete. Bur. Indian Stand., New Delhi

  48. IS: 516 (1959) Method of test for strength of concrete. Bur. Indian Stand., New Delhi

  49. IS:13311 (Part-1) (1992) Non-destructuctive testing of concrete- method of testing. Bur. Indian Stand., New Delhi

  50. Khatri RP, Sirivivatnanon V, Gross W (1995) Effect of different supplementary cementitious materials on mechanical properties of high performance concrete. Cem Concr Res 25:209–220. https://doi.org/10.1016/0008-8846(94)00128-L

    Article  Google Scholar 

  51. Mazloom M, Ramezanianpour AA, Brooks JJ (2004) Effect of silica fume on mechanical properties of high-strength concrete. Cem Concr Compos. https://doi.org/10.1016/S0958-9465(03)00017-9

    Article  Google Scholar 

  52. Kovler K, Roussel N (2011) Properties of fresh and hardened concrete. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2011.03.009

    Article  Google Scholar 

  53. Behnood A, Ziari H (2008) Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2007.06.003

    Article  Google Scholar 

  54. Ismeik M (2009) Effect of mineral admixtures on mechanical properties of high strength concrete made with locally available materials. Jordan J. Civ, Eng

    Google Scholar 

  55. Kadri EH, Duval R (2009) Hydration heat kinetics of concrete with silica fume. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2009.06.008

    Article  Google Scholar 

  56. Kashiyani BK, Pitroda J, Shah DBK (2012) A study of utilization aspect of polypropylene fibre for making value added concrete. Int J Sci Res 2:103–106. https://doi.org/10.15373/22778179/feb2013/37

    Article  Google Scholar 

  57. Alwash M, Breysse D, Sbartaï ZM (2015) Non-destructive strength evaluation of concrete: analysis of some key factors using synthetic simulations. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2015.09.023

    Article  Google Scholar 

  58. Alwash M, Sbartaï ZM, Breysse D (2016) Non-destructive assessment of both mean strength and variability of concrete: a new bi-objective approach. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2016.03.120

    Article  Google Scholar 

  59. A.I. of Japan (1983) Manual of nondestructive test methods for the evaluation of concrete strength. In: Archit. Inst. Japan Tokyo, Japan

  60. Kim WM, Oh H, Oh KC (2016) Estimating the compressive strength of high-strength concrete using surface rebound value and ultrasonic velocity. J Korea Inst Struct Maint Insp 20:1–9. https://doi.org/10.11112/jksmi.2016.20.2.001

    Article  Google Scholar 

  61. Rashid K, Waqas R (2017) Compressive strength evaluation by non-destructive techniques: an automated approach in construction industry. J Build Eng 12:147–154. https://doi.org/10.1016/j.jobe.2017.05.010

    Article  Google Scholar 

  62. Bungey J (1984) The use of ultrasonics for NDT of concrete. In: Brit J NDT, pp 366–369

  63. Galan A (1990) Combined ultrasound methods of concrete testing. In: North-Holland, Elsevier, Amsterdam

  64. Ismail M, Yusof K, Ibrahim A (1996) A combined ultrasonic method on the estimation of compressive concrete strength. INSIGHT 38:781–785

    Google Scholar 

  65. Pascale GP, Di Leo A, Carli R (2000) Evaluation of actual compressive strength of high strength concrete by NDT. 15th World conf. non-destructive test, 10p. https://www.ndt.net/article/wcndt00/papers/idn527/idn527.htm

  66. Atici U (2010) Prediction of the strength of mineral-addition concrete using regression analysis. Mag Concr Res 62:585–592. https://doi.org/10.1680/macr.2010.62.8.585

    Article  Google Scholar 

  67. Del Río LM, Jiménez A, López F, Rosa FJ, Rufo MM, Paniagua JM (2004) Characterization and hardening of concrete with ultrasonic testing. Ultrasonics 42:527–530. https://doi.org/10.1016/j.ultras.2004.01.053

    Article  Google Scholar 

  68. Mohammed BS, Azmi NJ, Abdullahi M (2011) Evaluation of rubbercrete based on ultrasonic pulse velocity and rebound hammer tests. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2010.09.004

    Article  Google Scholar 

  69. Khan MI (2012) Evaluation of non-destructive testing of high strength concrete incorporating supplementary cementitious composites. Resour Conserv Recycl 61:125–129. https://doi.org/10.1016/j.resconrec.2012.01.013

    Article  Google Scholar 

  70. Trtnik G, Kavčič F, Turk G (2009) Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. Ultrasonics 49:53–60. https://doi.org/10.1016/j.ultras.2008.05.001

    Article  Google Scholar 

  71. Malhotra V, Carino N (2010) Handbook on nondestructive testing of concrete, 2nd ed. https://doi.org/10.1201/9781420040050

  72. Sorensen EV (1983) Freezing and thawing resistance of condensed silica fume (Microsilica) concrete exposed to deicing chemicals. ACI Spec Publ 79:709–718. https://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&i=6720

  73. Yamato T, Emoto Y (1989) Chemical resistance of concrete containing condensed silica fume. Spec Publ 114:897–914

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baboo Rai.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, R., Rai, B. & Samui, P. Compressive strength prediction model of high-strength concrete with silica fume by destructive and non-destructive technique. Innov. Infrastruct. Solut. 6, 65 (2021). https://doi.org/10.1007/s41062-020-00447-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-020-00447-z

Keywords

Navigation