Skip to main content
Log in

Pushing Boundaries: What’s Next in Metal-Free C–H Functionalization for Sulfenylation?

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

The synthesis of thioether derivatives has been explored widely due to the potential application of these derivatives in medicinal chemistry, pharmaceutical industry and material chemistry. Within this context, there has been an increasing demand for the environmentally benign construction of C–S bonds via C–H functionalization under metal-free conditions. In the present article, we highlight recent developments in metal-free sulfenylation that have occurred in the past three years. The synthesis of organosulfur compounds via a metal-free approach using a variety of sulfur sources, including thiophenols, disulfides, sulfonyl hydrazides, sulfonyl chlorides, elemental sulfur and sulfinates, is discussed. Non-conventional strategies, which refer to the development of thioether derivatives under visible light and electrochemically mediated conditions, are also discussed. The key advantages of the reviewed methodologies include broad substrate scope and high reaction yields under environmentally benign conditions. This comprehensive review will provide chemists with a synthetic tool that will facilitate further development in this field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18

Similar content being viewed by others

Abbreviations

o-DCB:

o-Dichlorobenzene

DCE:

Dichloroethane

DMA:

Dimethyl acetamide

DMF:

Dimethyl formamide

DMSO:

Dimethyl sulfoxide

DPDME:

Dimethyl dipropylene glycol

GO:

Graphene oxide

LEDs:

Light-emitting diodes

NIS:

N–Iodosuccinimide

NMP:

N-Methyl-2-pyrrolidone

PIDA:

Diacetoxyiodobenzene

PIFA:

Phenyliodine bis(trifluoroacetate)

RT:

Room temperature

TBAI:

TetraButyl ammonium iodide

TBHP:

Tert-Butylhydroperoxide

THF:

Tetrahydrofuran

TMAI:

Tetramethyl ammonium iodide

References

  1. Davies HML, Du Bois J, Yu JQ (2011) C-H functionalization in organic synthesis. Chem Soc Rev 40:1855–1856. https://doi.org/10.1039/C1CS90010B

    Article  CAS  PubMed  Google Scholar 

  2. Davies HML, Morton D (2016) Recent advances in C-H functionalization. J Org Chem 81:343–350. https://doi.org/10.1021/acs.joc.5b02818

    Article  CAS  PubMed  Google Scholar 

  3. Davies HML, Morton D (2017) Collective approach to advancing C-H functionalization. ACS Cent Sci 3:936–943. https://doi.org/10.1021/acscentsci.7b00329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bhaskaran RP, Nayak KH, Sreelekha MK, Babu BP (2023) Progress in copper-catalysed/mediated intramolecular dehydrogenative coupling. Org Biomol Chem 21:237–251. https://doi.org/10.1039/D2OB01796B

    Article  CAS  PubMed  Google Scholar 

  5. Gutekunst WR, Baran PS (2011) C-H functionalization logic in total synthesis. Chem Soc Rev 40:1976–1991. https://doi.org/10.1039/C0CS00182A

    Article  CAS  PubMed  Google Scholar 

  6. Bagdi AK, Hajra A (2020) Visible light promoted C-H functionalization of imidazoheterocycles. Org Biomol Chem 18:2611–2631. https://doi.org/10.1039/D0OB00246A

    Article  CAS  PubMed  Google Scholar 

  7. Han FS (2013) Transition-metal-catalyzed Suzuki-Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts. Chem Soc Rev 42:5270–5298. https://doi.org/10.1039/C3CS35521G

    Article  CAS  PubMed  Google Scholar 

  8. Kiran RP, Chahal S et al (2021) Transition metal-free C-3 functionalization of quinoxalin-2(1H)-ones: recent advances and sanguine future. New J Chem 45:18722–18763. https://doi.org/10.1039/D1NJ03445F

    Article  CAS  Google Scholar 

  9. Shi L, Xia W (2012) Photoredox functionalization of C-H bonds adjacent to a nitrogen atom. Chem Soc Rev 41:7687–7697. https://doi.org/10.1039/C2CS35203F

    Article  CAS  PubMed  Google Scholar 

  10. Ruffoni A, Juliá F, Svejstrup TD et al (2019) Practical and regioselective amination of arenes using alkyl amines. Nat Chem 11:426–433. https://doi.org/10.1038/s41557-019-0254-5

    Article  CAS  PubMed  Google Scholar 

  11. Afewerki S, Córdova A (2016) Combinations of aminocatalysts and metal catalysts: a powerful cooperative approach in selective organic synthesis. Chem Rev 116:13512–13570. https://doi.org/10.1021/acs.chemrev.6b00226

    Article  CAS  PubMed  Google Scholar 

  12. Sun CL, Shi ZJ (2014) Transition-metal-free coupling reactions. Chem Rev 114:9219–9280. https://doi.org/10.1021/cr400274j

    Article  CAS  PubMed  Google Scholar 

  13. Peng W, Vessally E, Arshadi S et al (2019) Cross-dehydrogenative coupling reactions between C(sp)–H and X-H (X = N, P, S, Si, Sn) bonds: an environmentally benign access to heteroatom-substituted alkynes. Top Curr Chem 377:20. https://doi.org/10.1007/s41061-019-0245-4

    Article  CAS  Google Scholar 

  14. Saroha M, Sindhu J, Kumar S et al (2021) Transition metal-free sulfenylation of C-H bonds for C-S bond formation in recent years: mechanistic approach and promising future. ChemistrySelect 6:13077–13208. https://doi.org/10.1002/slct.202102042

    Article  CAS  Google Scholar 

  15. Dong DQ, Hao SH, Yang DS et al (2017) Sulfenylation of C-H bonds for C–S bond formation under metal-free conditions. Eur J Org Chem 2017:6576–6592. https://doi.org/10.1002/ejoc.201700853

    Article  CAS  Google Scholar 

  16. Xu XM, Chen DM, Wang ZL (2020) Recent advances in sulfenylation of C(sp3)-H bond under transition metal-free conditions. Chin Chem Lett 31:49–57. https://doi.org/10.1016/j.cclet.2019.05.048

    Article  CAS  Google Scholar 

  17. Shen C, Zhang P, Sun Q et al (2015) Recent advances in C-S bond formation via C-H bond functionalization and decarboxylation. Chem Soc Rev 44:291–314

    Article  CAS  PubMed  Google Scholar 

  18. Scott KA, Njardarson JT (2018) Analysis of US FDA-approved drugs containing sulfur atoms. Top Curr Chem 376:5. https://doi.org/10.1007/s41061-018-0184-5

    Article  CAS  Google Scholar 

  19. Ruhee RT, Roberts LA, Ma S, Suzuki K (2020) Organosulfur compounds: a review of their anti-inflammatory effects in human health. Front Nutr 7:64. https://doi.org/10.3389/fnut.2020.00064

  20. Islam A, Choudhury P, Sarkar K et al (2023) Molecular iodine catalyzed C(sp2)–H sulfenylation of biologically active enaminone compounds under mechanochemical conditions and studies on their biocidal activity including molecular docking and DFT. Mol Divers. https://doi.org/10.1007/s11030-023-10677-9

    Article  PubMed  Google Scholar 

  21. Sinha AK, Equbal D, Rastogi SK et al (2022) An overview on indole aryl sulfide/sulfone (IAS) as anti-HIV non-nucleoside reverse transcriptase inhibitors (NNRTIs). Asian J Org Chem 11:e202100744. https://doi.org/10.1002/ajoc.202100744

    Article  CAS  Google Scholar 

  22. Rani P, Chahal S, Kumar R et al (2023) Electro-organic synthesis of C-5 sulfenylated amino uracils: optimization and exploring topoisomerase-I based anti-cancer profile. Bioorg Chem 138:106660. https://doi.org/10.1016/j.bioorg.2023.106660

    Article  CAS  PubMed  Google Scholar 

  23. Hosseinian A, Arshadi S, Sarhandi S et al (2019) Direct C-H bond sulfenylation of (Het)arenes using sulfonyl hydrazides as thiol surrogate: a review. J Sulfur Chem 40:289–311. https://doi.org/10.1080/17415993.2019.1582654

    Article  CAS  Google Scholar 

  24. Hosseinian A, Ahmadi S, Nasab FAH et al (2018) Cross-dehydrogenative C-H/S–H coupling reactions. Top Curr Chem (Cham) 376(6):39. https://doi.org/10.1007/s41061-018-0217-0

  25. Abu-yousef IA, Harpp DN (2003) New sulfenyl chloride chemistry: synthesis, reactions and mechanisms toward carbon-carbon double bonds. Sulfur Rep 24:255–282. https://doi.org/10.1080/01961770308047977

    Article  CAS  Google Scholar 

  26. Wu Q, Zhao D, Qin X et al (2011) Synthesis of di(hetero)aryl sulfides by directly using arylsulfonyl chlorides as a sulfur source. Chem Commun 32. https://doi.org/10.1039/c1cc13633j

  27. Chen M, Huang ZT, Zheng QY (2012) Visible light-induced 3-sulfenylation of N-methylindoles with arylsulfonyl chlorides. Chem Commun 48:11686–11688. https://doi.org/10.1039/c2cc36866h

    Article  CAS  Google Scholar 

  28. Herradura PS, Pendola KA, Guy RK (2000) Copper-mediated cross-coupling of aryl boronic acids and alkyl thiols. Org Lett 2:2019–2022. https://doi.org/10.1021/ol005832g

    Article  CAS  PubMed  Google Scholar 

  29. Itoh T, Mase T (2004) A general palladium-catalyzed coupling of aryl bromides/triflates and thiols. Org Lett 6:4587–4590. https://doi.org/10.1021/ol047996t

    Article  CAS  PubMed  Google Scholar 

  30. Sun J, Qiu JK, Zhu YL et al (2015) Metal-free iodine-catalyzed synthesis of fully substituted pyrazoles and its sulphenylation. J Org Chem 80:8217–8224. https://doi.org/10.1021/acs.joc.5b01280

    Article  CAS  PubMed  Google Scholar 

  31. Zhao X, Deng Z, Wei A et al (2016) Iodine-catalysed regioselective thiolation of flavonoids using sulfonyl hydrazides as sulfenylation reagents. Org Biomol Chem 14:7304–7312. https://doi.org/10.1039/C6OB01006G

    Article  CAS  PubMed  Google Scholar 

  32. Wen J, Niu C, Yan K et al (2020) Electrochemical-induced regioselective C-3 thiomethylation of imidazopyridines via a three-component cross-coupling strategy. Green Chem 22:1129–1133. https://doi.org/10.1039/C9GC04068D

    Article  CAS  Google Scholar 

  33. Yuan Y, Cao Y, Qiao J et al (2019) Electrochemical oxidative C-H sulfenylation of imidazopyridines with hydrogen evolution. Chin J Chem 37:49–52. https://doi.org/10.1002/cjoc.201800405

    Article  CAS  Google Scholar 

  34. Hu B, Zhou P, Zhang Q et al (2018) Metal-free oxidative thioesterification of methyl ketones with thiols/disulfides for the synthesis of α-ketothioesters. J Org Chem 83:14978–14986. https://doi.org/10.1021/acs.joc.8b02235

    Article  CAS  PubMed  Google Scholar 

  35. Siddaraju Y, Prabhu KR (2018) Regioselective sulfenylation of α′-CH3 or α′-CH2 groups of α, β-unsaturated ketones with heterocyclic thiols. J Org Chem 83:2986–2992. https://doi.org/10.1021/acs.joc.7b03290

    Article  CAS  PubMed  Google Scholar 

  36. Beukeaw D, Noikham M, Yotphan S (2019) Iodine/persulfate-promoted site-selective direct thiolation of quinolones and uracils. Tetrahedron 75:130537. https://doi.org/10.1016/j.tet.2019.130537

    Article  CAS  Google Scholar 

  37. Lv F, Tang B, Hao E et al (2019) Transition-metal-free regioselective cross-coupling of BODIPYs with thiols. Chem Commun 55:1639–1642. https://doi.org/10.1039/C8CC09821B

    Article  CAS  Google Scholar 

  38. Zeng JW, Liu YC, Hsieh P-A et al (2014) Metal-free cross-coupling reaction of aldehydes with disulfides by using DTBP as an oxidant under solvent-free conditions. Green Chem 16:2644–2652. https://doi.org/10.1039/C4GC00025K

    Article  CAS  Google Scholar 

  39. Zhao J, Fang H, Han J et al (2014) Metal-free preparation of cycloalkyl aryl sulfides via di-tert-butyl peroxide-promoted oxidative C(sp3)-H bond thiolation of cycloalkanes. Adv Synth Catal 356:2719–2724. https://doi.org/10.1002/adsc.201400032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Teng QH, Yao Y, Wei WX et al (2019) Direct C-H sulfenylation of quinoxalinones with thiols under visible-light-induced photocatalyst-free conditions. Green Chem 21:6241–6245. https://doi.org/10.1039/c9gc03045j

    Article  CAS  Google Scholar 

  41. Sun P, Yang D, Wei W et al (2017) Visible light-induced C-H sulfenylation using sulfinic acids. Green Chem 19:4785–4791. https://doi.org/10.1039/c7gc01891f

    Article  CAS  Google Scholar 

  42. Zhu Y, Yang L, Fang L et al (2020) NH4I-catalyzed C-S bond formation via an oxidation relay strategy: Efficient access to dithioether decorated indolizines. Tetrahedron Lett 61:152368. https://doi.org/10.1016/j.tetlet.2020.152368

    Article  CAS  Google Scholar 

  43. Zhao W, Zhang F, Deng GJ (2021) Iodine/DMSO-promoted selective direct arylthiation of anilines with thiols under metal-free conditions. J Org Chem 86:291–301. https://doi.org/10.1021/acs.joc.0c02078

    Article  CAS  PubMed  Google Scholar 

  44. Jiang X, Zhao Z, Shen Z et al (2020) Flavin/I2-catalyzed aerobic oxidative C-H sulfenylation of aryl-fused cyclic amines. Eur J Org Chem 2020:3889–3895. https://doi.org/10.1002/ejoc.202000508

    Article  CAS  Google Scholar 

  45. Yuan X, Tan X, Ding N et al (2020) NIS-promoted intermolecular bis-sulfenylation of allenamides: Via a two-step radical process: synthesis of 1,3-dithioethers. Org Chem Front 7:2725–2730. https://doi.org/10.1039/d0qo00690d

    Article  CAS  Google Scholar 

  46. Saroha M, Sindhu J, Kumar P, Khurana JM (2021) Synthesis, crystal structure and dft studies of polyfunctionalized alkenes: A transition metal-free C(sp2)-H sulfenylation of electron deficient alkyne. J Mol Struct 1225:129089. https://doi.org/10.1016/j.molstruc.2020.129089

    Article  CAS  Google Scholar 

  47. Pandey K, Shinde VN, Rangan K, Kumar A (2020) KOH-mediated intramolecular amidation and sulfenylation: A direct approach to access 3-(arylthio)imidazo [1,2-a]pyridin-2-ols. Tetrahedron 76:131499. https://doi.org/10.1016/j.tet.2020.131499

    Article  CAS  Google Scholar 

  48. Ghosh P, Chhetri G, Das S (2021) Metal free C-3 chalcogenation (sulfenylation and selenylation) of 4H-pyrido [1,2-a]pyrimidin-4-ones. RSC Adv 11:10258–10263. https://doi.org/10.1039/d1ra00834j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rani P, Kataria R, Kumar P et al (2024) Rationally designed C-3 sulfenylated 2-phenyl-4 H-pyrido [1, 2-a] pyrimidin-4-one based fluorescent probe for recognition of Fe3+. J Mol Struct 1302:137456. https://doi.org/10.1016/j.molstruc.2023.137456

    Article  CAS  Google Scholar 

  50. Tian S, Wang C, Xia J et al (2021) Transition metal-free, free-radical sulfenylation of the α-C(sp3)−H bond in arylacetamides and its application toward 2-thiomethyl benzoxazoles synthesis. Adv Synth Catal 363:4627–4631. https://doi.org/10.1002/adsc.202100816

    Article  CAS  Google Scholar 

  51. Samanta SK, Sarkar R, Bera MK (2021) Synthesis of (E)-iodo vinylsulfones via oxidative addition of thiol into alkyne under metal free condition. Tetrahedron 94:132310. https://doi.org/10.1016/j.tet.2021.132310

    Article  CAS  Google Scholar 

  52. Abbasi M, Nowrouzi N, Sajedinia S (2022) I2-catalyzed one-pot oxidative condensation of thiourea, methyl ketones, and aryl thiols into 5-sulfenylated 2-amino-1,3-thiazoles by DMSO. Mol Divers 27:2887–2894. https://doi.org/10.1007/s11030-022-10585-4

    Article  CAS  PubMed  Google Scholar 

  53. Huang H-Y, Wang H-M, Kang I-J, Chen L-C (2003) Intramolecular sulfenylation using sulfides synthesis of 5H-pyrrolo [1,2-a] [3,1]benzothiazines. J Chin Chem Soc 50:1057–1060. https://doi.org/10.1002/jccs.200300150

    Article  CAS  Google Scholar 

  54. Li J, Liu B, Hu Y et al (2022) Hypervalent iodine-induced disulfenylation of thiophene derivatives with thiophenols. Tetrahedron Lett 8:154041. https://doi.org/10.1016/j.tetlet.2022.154041

    Article  CAS  Google Scholar 

  55. Xiong L, He S, Pan J, Yu B (2022) Metal-/catalyst-free one-pot three-component thioamination of 1,4-naphthoquinone in a sustainable solvent. New J Chem 1:4550–4554. https://doi.org/10.1039/d1nj05741c

    Article  CAS  Google Scholar 

  56. Hu C, Liu R, Ning Z et al (2022) TsCl-promoted thiolation of quinoline N-oxides with thiophenols. Org Biomol Chem 20:8280–8284. https://doi.org/10.1039/d2ob01425d

    Article  CAS  PubMed  Google Scholar 

  57. Ni J, Lanzi M, Kleij AW (2022) Unusual DBU-catalyzed decarboxylative formation of allylic thioethers from vinyl cyclic carbonates and thiols. Organ Chem Front 9(24):6780–6785. https://doi.org/10.1039/d2qo01511k

  58. Zhang Q, Shi M, Mi X, Luo S (2022) Catalytic asymmetric oxidative sulfenylation of β-ketocarbonyls using a chiral primary amine. Org Chem Front 9:1276–1281. https://doi.org/10.1039/d1qo01748a

    Article  CAS  Google Scholar 

  59. Zheng Y, Liu ZW, Li T et al (2022) KIO3-mediated δ-C(sp3)-H sulfenylation of enaminones. Org Lett 24:7533–7537. https://doi.org/10.1021/acs.orglett.2c02824

    Article  CAS  PubMed  Google Scholar 

  60. Sonam N, Shinde VN, Rangan K, Kumar A (2023) Selectfluor-mediated regioselective C-3 alkoxylation, amination, sulfenylation, and selenylation of quinoxalin-2(1H)-ones. J Org Chem 88:2344–2357. https://doi.org/10.1021/acs.joc.2c02756

    Article  CAS  PubMed  Google Scholar 

  61. Chen X, Cui H (2023) AcBr/DMSO mediated sulfenylation of pyrrolo [2,1-a]isoquinolines. J Org Chem 88:7347–7361. https://doi.org/10.1021/acs.joc.3c00566

    Article  CAS  PubMed  Google Scholar 

  62. Dhurey A, Mandal S, Pramanik A (2022) I2/DMSO-promoted synthesis of diaryl sulfide- and selenide-embedded arylhydrazones. J Org Chem 88:5377–5390. https://doi.org/10.1021/acs.joc.2c02974

    Article  CAS  Google Scholar 

  63. Nikiforov EA, Vaskina NF, Moseev TD et al (2023) Metal-free eliminative C-H arylthiolation of 2H-imidazole N-oxides with thiophenols. Chemistry 5:1477–1487. https://doi.org/10.3390/chemistry5030100

    Article  CAS  Google Scholar 

  64. Cui X, Tian H, Wang S et al (2023) KBr O3-promoted cross-dehydrogenative coupling reaction: An odorless regioselective sulfenylation of imidazoheterocycles in water. J Org Chem 88:8576–8582. https://doi.org/10.1021/acs.joc.3c00499

    Article  CAS  PubMed  Google Scholar 

  65. Yi R, Liu S, Gao H et al (2020) Iodine-promoted direct thiolation (selenylation) of imidazole with disulfides (diselenide): a convenient and metal-free protocol for the synthesis of 2-arylthio(seleno)imidazole. Tetrahedron 76:130951. https://doi.org/10.1016/j.tet.2020.130951

    Article  CAS  Google Scholar 

  66. Ai Z, Xiao J, Li Y et al (2020) Metal-free synthesis of 3-chalcogenyl chromones from alkynyl aryl ketones and diorganyl diselenides/disulfides mediated by PIFA. Org Chem Front 7:3935–3940. https://doi.org/10.1039/d0qo01175d

    Article  CAS  Google Scholar 

  67. Song Z, Ding C, Wang S et al (2020) Metal-free regioselective C-H chalcogenylation of coumarins/(hetero)arenes at ambient temperature. Chem Commun 56:1847–1850. https://doi.org/10.1039/c9cc09001k

    Article  CAS  Google Scholar 

  68. Duan B, Li H, Chen Y et al (2022) Access to α, α-dithioketones through direct di-sulfenylation of methyl ketones mediated by KOH-DMSO system. Tetrahedron Lett 94:2–5. https://doi.org/10.1016/j.tetlet.2022.153697

    Article  CAS  Google Scholar 

  69. Xu S, Yi R, Zeng C et al (2023) CsOH-promoted regiospecific sulfenylation, selenylation, and telluration of indoles in H2O. Synlett 34:124–132. https://doi.org/10.1055/a-1879-2521

    Article  CAS  Google Scholar 

  70. Chen WC, Bai R, Cheng WL et al (2023) Base-mediated chalcogenoaminative annulation of 2-alkynylanilines for direct access to 3-sulfenyl/selenyl-1H-indoles. Org Biomol Chem. https://doi.org/10.1039/d3ob00279a

    Article  PubMed  Google Scholar 

  71. Mukherjee N, Chatterjee T (2023) Recyclable iodine-catalyzed oxidative C-H chalcogenation of 1,1-diarylethenes in water: green synthesis of trisubstituted vinyl sulfides and selenides. Green Chem 25:8798–8807. https://doi.org/10.1039/d3gc02999a

    Article  CAS  Google Scholar 

  72. Liu D, Song S, Chen L et al (2023) Access to thiionized-, selenolized-, and alkylated 5-alkylidene 3-pyrrolin-2-one derivatives via a regioselective oxidative annulation reaction. Org Biomol Chem 21:2596–2602. https://doi.org/10.1039/d3ob00014a

    Article  CAS  PubMed  Google Scholar 

  73. Wang HH, Zhu YY, Chen CL et al (2023) Transition metal free four component reaction of nitriles and disulfides/diselenides. Chem Commun 60:862–865. https://doi.org/10.1039/d3cc05416k

    Article  CAS  Google Scholar 

  74. Gisbert P, Pastor IM (2020) Efficient thiophene synthesis mediated by 1,3-Bis(carboxymethyl)imidazolium Chloride: C-C and C-S Bond Formation. Eur J Org Chem 2020:4319–4325. https://doi.org/10.1002/ejoc.202000484

    Article  CAS  Google Scholar 

  75. Li L, Chen Q, Xu HH et al (2020) DBU-promoted demethoxylative thioannulation of alkynyl oxime ethers with sulfur for the synthesis of bisisothiazole-4-yl disulfides. J Org Chem 85:10083–10090. https://doi.org/10.1021/acs.joc.0c01334

    Article  CAS  PubMed  Google Scholar 

  76. Guo T, Wei XN, Zhang M et al (2020) Catalyst and additive-free oxidative dual C-H sulfenylation of imidazoheterocycles with elemental sulfur using DMSO as a solvent and an oxidant. Chem Commun 56:5751–5754. https://doi.org/10.1039/d0cc00043d

    Article  CAS  Google Scholar 

  77. Gan Z, Zhu X, Yan Q et al (2021) Oxidative dual C-H sulfenylation: a strategy for the synthesis of bis(imidazo [1,2-a]pyridin-3-yl)sulfanes under metal-free conditions using sulfur powder. Chin Chem Lett 32:1705–1708. https://doi.org/10.1016/j.cclet.2020.12.046

    Article  CAS  Google Scholar 

  78. Nguyen TB, Mac DH, Tran TMC et al (2022) Base-catalyzed multicomponent access to quinoxalin-2-thiones from o-phenylenediamines, aryl ketones and sulfur. Org Biomol Chem 20:7226–7231. https://doi.org/10.1039/D2OB01343F

    Article  CAS  PubMed  Google Scholar 

  79. Yu Z, Su J, Huang C et al (2022) Base-promoted oxidative sulfuration/ cyclization to construct naphtho [2,3-d]thiazole through three-component reaction using S8 as the sulfur source. Asian J Org Chem 11(11)5–11. https://doi.org/10.1002/ajoc.202200288

  80. Guo T, Bi L, Shen L et al (2023) Selective oxidative β-C–H bond sulfenylation of tetrahydroisoquinolines with elemental sulfur. Org Biomol Chem 21:127–131. https://doi.org/10.1039/D2OB01976K

    Article  CAS  Google Scholar 

  81. Zhang B, Liu D, Sun Y et al (2021) Preparation of thiazole-2-thiones through TBPB-promoted oxidative cascade cyclization of enaminones with elemental Sulfur. Org Lett 16;23(8):3076-3082 https://doi.org/10.1021/acs.orglett.1c00751

  82. Reddy RJ, Shankar A, Kumar JJ et al (2022) Diethyl phosphite-mediated switchable synthesis of bis(imidazoheterocycles) derived disulfanes and sulfanes using imidazoheterocycles and octasulfur. New J Chem 46:4784–4791. https://doi.org/10.1039/d1nj05226h

    Article  CAS  Google Scholar 

  83. Guo T, Bi L, Zhang M et al (2022) Access to sulfur-containing bisheterocycles through base-promoted consecutive tandem cyclization/sulfenylation with elemental sulfur. J Org Chem 87:16907–16912. https://doi.org/10.1021/acs.joc.2c02248

    Article  CAS  PubMed  Google Scholar 

  84. Yueting W, Yali L, Jing H et al (2020) TBAI-mediated sulfenylation of arenes with arylsulfonyl hydrazides in DPDME. Tetrahedron 76:131646. https://doi.org/10.1016/j.tet.2020.131646

    Article  CAS  Google Scholar 

  85. Yang CY, Li X, Liu B, Huang GL (2021) I2-promoted direct C−H sulfenylation of isoquinolin-1(2H)-ones with sulfonyl chlorides. Eur J Org Chem 2021:117–124. https://doi.org/10.1002/ejoc.202001371

    Article  CAS  Google Scholar 

  86. Hu J, Ji X, Hao S et al (2020) Regioselective C-H sulfenylation of N-sulfonyl protected 7-azaindoles promoted by TBAI: a rapid synthesis of 3-thio-7-azaindoles. RSC Adv 10:31819–31823. https://doi.org/10.1039/d0ra06635d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang J, Zhu J, Zhou A (2020) One-pot synthesis of imidazo [1,2-α]pyridine thioethers using imidazo [1,2-α]pyridines, arylsulfonyl chlorides and hydrazine. Phosphorus Sulfur Silicon Relat Elem 195:256–262. https://doi.org/10.1080/10426507.2019.1686376

    Article  CAS  Google Scholar 

  88. Mal S, Jana M (2022) Sulfonyl hydrazide induced sulfenylation of imidazoheteroarenes: a ‘catalyst and solvent free’ protocol. Synth Commun 52:1059–1068. https://doi.org/10.1080/00397911.2022.2069506

    Article  CAS  Google Scholar 

  89. Devi J, Saikia N, Choudhury G, Deka DC (2021) Iodine catalyzed regioselective sulfenylation of aminouracils with sulfonyl hydrazides. Tetrahedron Lett 65:152753. https://doi.org/10.1016/j.tetlet.2020.152753

    Article  CAS  Google Scholar 

  90. Feng Y, He J, Wei Y et al (2022) Iodine-promoted tandem pyrazole annulation and C−H sulfenylation for the synthesis of C4-sulfenylated pyrazoles. Eur J Org Chem. https://doi.org/10.1002/ejoc.202200357

    Article  Google Scholar 

  91. Zhu Y-S, Xue Y, Liu W et al (2020) Temperature-controlled chalcogenation and chalcogenocyanation of imidazopyridines in water under transition metal-free conditions. J Org Chem 85:9106–9116. https://doi.org/10.1021/acs.joc.0c01035

    Article  CAS  PubMed  Google Scholar 

  92. Ali D, Panday AK, Choudhury LH (2020) Hydrogen peroxide-mediated rapid room temperature metal-free C(sp2)-H thiocyanation of amino pyrazoles, amino uracils, and enamines. J Org Chem 85:13610–13620. https://doi.org/10.1021/acs.joc.0c01738

    Article  CAS  PubMed  Google Scholar 

  93. Sun J, Mu Y, Iqbal Z et al (2021) Iodine-mediated sulfenylation of imidazo [1,2- a ]pyridines with ethyl arylsulfinates. Synlett 32:1014–1018. https://doi.org/10.1055/a-1396-5933

    Article  CAS  Google Scholar 

  94. Xiong B, Xu S, Liu Y et al (2021) Metal-free, acid/phosphine-induced regioselective thiolation of p-quinone methides with sodium aryl/alkyl sulfinates. J Org Chem 86:1516–1527. https://doi.org/10.1021/acs.joc.0c02390

    Article  CAS  PubMed  Google Scholar 

  95. Zhang DR, Hu LP, Yang CY et al (2022) Tetramethylammonium iodide (TMAI)-promoted sulfenylation/annulation of enaminones with thiosulfonates. Asian J Org Chem 11:e202100694. https://doi.org/10.1002/ajoc.202100694

    Article  CAS  Google Scholar 

  96. Wu H, Zhao L, Wang W et al (2023) Reductive thiolation and oxidative dehydroaromatization of cyclohexanones with primary amines and sodium sulfinates to access o-sulfanylanilines. Org Chem Front 10:5484–5489. https://doi.org/10.1039/d3qo01312j

    Article  CAS  Google Scholar 

  97. Duan S, Zi Y, Du Y et al (2023) Radical c(sp3)-s-coupling for the synthesis of α-amino sulfides. Org Lett 25(20):3687–3692. https://doi.org/10.1021/acs.orglett.3c01121

  98. Sun S, Ye H, Mao T et al (2022) Synthesis of asymmetric diaryl sulfides via HI-mediated C(sp2)-H sulfenylation of arenes with sodium sulfinates. J Org Chem 88:4092–4100. https://doi.org/10.1021/acs.joc.2c02374

    Article  CAS  Google Scholar 

  99. Mamedov VA, Algaeva NE, Syakaev VV et al (2022) Bromine-promoted one-pot furo [b]annulation and α-C(sp2)-thiomethylation cascade of (E)-3-styrylquinoxalin-2(1 H)-ones with dimethyl sulfoxide. J Org Chem 87:12072–12086. https://doi.org/10.1021/acs.joc.2c01158

    Article  CAS  PubMed  Google Scholar 

  100. Qiao H, Zhao K, Zhu X et al (2023) Metal-oxidant and additive-free sulfenylation of imidazo [1 2-a] pyridines using sulfenamides and an I2 catalyst. Asian J Org Chem 12(8):e202300292. https://doi.org/10.1002/ajoc.202300292

  101. Suresh RN, Swaroop TR, Gowda D et al (2023) A panoramic view on synthetic applications of a—oxothioamides : a highly regioselective synthesis of 2-acyl-4-(het)arylthiazoles and thioethers. RSC Adv 13:4910–4916. https://doi.org/10.1039/d2ra08118k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zheng L, Mei W, Zou X et al (2023) DBU-promoted deaminative thiolation of 1H-benzo [d]imidazol-2-amines and benzo [d]oxazol-2-amines. J Org Chem 88:272–284. https://doi.org/10.1021/acs.joc.2c02297

    Article  CAS  PubMed  Google Scholar 

  103. Zhou J, Li Z, Sun Z et al (2020) Electrochemically C-H/S-H oxidative cross-coupling between quinoxalin-2(1H)-ones and thiols for the synthesis of 3-thioquinoxalinones. J Org Chem 85:4365–4372. https://doi.org/10.1021/acs.joc.0c00050

    Article  CAS  PubMed  Google Scholar 

  104. Mitsudo K, Matsuo R, Yonezawa T et al (2020) Electrochemical synthesis of thienoacene derivatives: transition-metal-free dehydrogenative C−S coupling promoted by a halogen mediator. Angew Chemie 132:7877–7881. https://doi.org/10.1002/ange.202001149

    Article  Google Scholar 

  105. Liu X, Niu P, Jin J et al (2020) Electrochemical access to aryl sulfides from aryl thiols and electron-rich arenes with the potassium iodide as a mediator. Electrochim Acta 331:135371. https://doi.org/10.1016/j.electacta.2019.135371

    Article  CAS  Google Scholar 

  106. Wang D, Zhang L, Xiao F et al (2022) The electrochemically selective C3-thiolation of quinolines. Org Chem Front 9:2986–2993. https://doi.org/10.1039/d2qo00148a

    Article  CAS  Google Scholar 

  107. Nayek N, Karmakar P, Mandal M et al (2022) Photochemical and electrochemical regioselective cross-dehydrogenative C(sp2)-H sulfenylation and selenylation of substituted benzo [a]phenazin-5-ols. New J Chem 46:13483–13497. https://doi.org/10.1039/d2nj02224a

    Article  CAS  Google Scholar 

  108. Rani P, Chahal S, Kiran et al (2023) Rationally designed novel phenazine based chemosensor with real time Hg2+ sensing application. J Mol Struct 1293:136150. https://doi.org/10.1016/j.molstruc.2023.136150

    Article  CAS  Google Scholar 

  109. Bhati KS, Nagar R, Malviya BK et al (2022) Electrochemical regioselective sulfenylation of 2H-indazoles with thiols in batch and continuous Flow. J Org Chem 87:13845–13855. https://doi.org/10.1021/acs.joc.2c01549

    Article  CAS  PubMed  Google Scholar 

  110. Jat PK, Yadav L, Chouhan A et al (2023) Electrochemical site-selective direct C-H sulfenylation and selenylation of a chromone-fused-indolizine (CFI) skeleton. Chem Commun 59:5415–5418. https://doi.org/10.1039/d3cc00867c

    Article  CAS  Google Scholar 

  111. Karmakar P, Karmakar I, Pal D et al (2023) Electrochemical regioselective C(sp2)–H selenylation and sulfenylation of substituted 2-amino-1,4-naphthoquinones. J Org Chem 88:1049–1060. https://doi.org/10.1021/acs.joc.2c02486

    Article  CAS  PubMed  Google Scholar 

  112. Chouhan A, Ucheniya K, Yadav L et al (2023) Electrochemical direct C-H mono and bis-chalcogenation of indolizine frameworks under oxidant-free conditions. Org Biomol Chem 21:7643–7653. https://doi.org/10.1039/d3ob01109g

    Article  CAS  PubMed  Google Scholar 

  113. Mulina OM, Doronin MM, Terent AO (2023) Disulfides as versatile starting reagents: effective sulfonylation of alkenes with disulfides under electrochemical conditions. Org Chem Front 10:3559–3566. https://doi.org/10.1039/d3qo00589e

    Article  CAS  Google Scholar 

  114. Pan Z, Wang X, Zhao S et al (2023) Defluorinative thiolation of gem-difluoroalkenes by convergent paired electrolysis. Org Lett 25:6143–6148. https://doi.org/10.1021/acs.orglett.3c02235

    Article  CAS  PubMed  Google Scholar 

  115. Li D, Chen L, Jin Y et al (2023) An electrochemical-enabled cascaded cyclization of enaminones with potassium thiocyanate and alcohols to access 2-alkoxythiazoles. Green Chem 25:4656–4661. https://doi.org/10.1039/d3gc01194a

    Article  CAS  Google Scholar 

  116. Hazarika S, Barman P (2020) Visible-light cercosporin catalyzed sulfenylation of electron-rich compounds with thiols under transition-metal-free conditions. ChemistrySelect 5:11583–11589. https://doi.org/10.1002/slct.202002512

    Article  CAS  Google Scholar 

  117. Zhou J, Zhou P, Zhao T et al (2019) (Thio)etherification of quinoxalinones under visible-light photoredox catalysis. Adv Synth Catal 361:5371–5382. https://doi.org/10.1002/adsc.201901008

    Article  CAS  Google Scholar 

  118. Xie LY, Chen YL, Qin L et al (2019) Visible-light-promoted direct C-H/S–H cross-coupling of quinoxalin-2(1H)-ones with thiols leading to 3-sulfenylated quinoxalin-2(1H)-ones in air. Org Chem Front 6:3950–3955. https://doi.org/10.1039/C9QO01240K

    Article  CAS  Google Scholar 

  119. Yang J, Wang G, Chen S et al (2020) Catalyst-free, visible-light-promoted S-H insertion reaction between thiols and α-diazoesters. Org Biomol Chem 18:9494–9498. https://doi.org/10.1039/D0OB02006K

    Article  CAS  PubMed  Google Scholar 

  120. Liu C, Peng X, Hu D et al (2020) The direct C3 chalcogenylation of indolines using a graphene-oxide-promoted and visible-light-induced synergistic effect. New J Chem 44:17245–17251. https://doi.org/10.1039/d0nj00747a

    Article  CAS  Google Scholar 

  121. Roy VJ, Sen PP, Raha Roy S (2021) Visible-light-mediated cross dehydrogenative coupling of thiols with aldehydes: metal-free synthesis of thioesters at room temperature. J Org Chem 86:16965–16976. https://doi.org/10.1021/acs.joc.1c02111

    Article  CAS  PubMed  Google Scholar 

  122. Brahmachari G, Bhowmick A, Karmakar I (2021) Visible light-driven and singlet oxygen-mediated photochemical cross-dehydrogenative C3–H sulfenylation of 4-hydroxycoumarins with thiols using Rose Bengal as a photosensitizer. J Org Chem 86:9658–9669. https://doi.org/10.1021/acs.joc.1c00919

    Article  CAS  PubMed  Google Scholar 

  123. Bi WZ, Zhang WJ, Li CY et al (2022) Photoexcited sulfenylation of C(sp3)-H bonds in amides using thiosulfonates. Org Biomol Chem 20:3902–3906. https://doi.org/10.1039/d2ob00557c

    Article  CAS  PubMed  Google Scholar 

  124. Huang Q, Peng X, Li H et al (2022) Visible-light-induced, graphene oxide-promoted C3-chalcogenylation of indoles strategy under transition-metal-free conditions. Molecules 27:772. https://doi.org/10.3390/molecules27030772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Saikia BS, Borpatra PJ, Rahman I et al (2022) Visible-light-promoted sulfenylation of 6-aminouracils under catalyst-free conditions. New J Chem 46:16523–16529. https://doi.org/10.1039/d2nj01941h

    Article  CAS  Google Scholar 

  126. Nayek N, Brahmachari G (2023) Visible-light-mediated self-sensitized oxidative and regioselective C(sp2)−H selenylation and sulfenylation of substituted 2-amino-1,4-naphthoquinones. Eur J Org Chem 26:e202201343. https://doi.org/10.1002/ejoc.202201343

    Article  CAS  Google Scholar 

  127. Khan S, Nair AM, Volla CMR (2022) Visible-light mediated allylation of thiols with allylic alcohols. Org Chem Front 10:157–162. https://doi.org/10.1039/d2qo01591a

    Article  CAS  Google Scholar 

  128. Paul S, Das S, Choudhuri T et al (2022) Visible-light-induced regioselective C-H sulfenylation of pyrazolo [1,5-a]pyrimidines via cross-dehydrogenative coupling. J Org Chem 88:4187–4198. https://doi.org/10.1021/acs.joc.2c02665

    Article  CAS  Google Scholar 

  129. Singh S, Dagar N, Pal G, Raha Roy S (2022) Photoinduced radical cascade reactions for the thioalkylation of quinoxalin-2(1H)-ones: an access to β-heteroaryl thioethers under metal- and catalyst-free conditions. Green Chem 24:8460–8465. https://doi.org/10.1039/d2gc03017a

    Article  CAS  Google Scholar 

  130. Qu Z, Ji X (2023) TBHP-mediated photochemical coupling/cyclization of N-arylacrylamides with thiols. Org Biomol Chem 21:940–944. https://doi.org/10.1039/d2ob02187k

    Article  CAS  PubMed  Google Scholar 

  131. Shen J, Li J, Chen M, Chen Y (2023) Photocatalyst free, metal free, visible light induced thiolation/pyridylation of styrenes using an electron donor—acceptor complex as a bifunctional reagent. Org Chem Front 10:1166–1172. https://doi.org/10.1039/d2qo01889f

    Article  CAS  Google Scholar 

  132. Das D, Ghosh KG, Garai S et al (2023) An organo-photocatalyzed visible-light-driven multi-component approach for carbothioaryl/alkylation of activated alkenes via C(sp3)-H bond functionalization. Org Biomol Chem 21:7724–7729. https://doi.org/10.1039/d3ob01150j

    Article  CAS  PubMed  Google Scholar 

  133. Hu X, Guo H, Jiang H et al (2023) Visible-light-induced C(sp3)−H thiocyanation of pyrazolin-5-ones: a practical synthesis of 4-thiocyanated 5-hydroxy-1H-pyrazoles. Org Biomol Chem 21:2232–2235. https://doi.org/10.1039/d3ob00092c

    Article  CAS  PubMed  Google Scholar 

  134. Dhara HN, Rakshit A, Barik D et al (2023) Visible-light driven electron-donor-acceptor (EDA) complex-initiated synthesis of thio-functionalized pyridines. Chem Commun 59:7990–7993. https://doi.org/10.1039/d3cc01678a

    Article  CAS  Google Scholar 

  135. Khandelia T, Ghosh S, Panigrahi P et al (2023) Photo-induced 1,2-thiohydroxylation of maleimide involving disulfide and singlet oxygen. Chem Commun 59:11196–11199. https://doi.org/10.1039/d3cc03296e

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Payal Rani is grateful to UGC for offering financial aid through Senior Research Fellowship (SRF) [UGC Reference No. 269/(CSIR-UGC NET JRF DEC.-2017)]. Sandhya is thankful to CCSHAU for providing research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayant Sindhu.

Ethics declarations

Conflict of Interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, P., Chahal, S., Singh, R. et al. Pushing Boundaries: What’s Next in Metal-Free C–H Functionalization for Sulfenylation?. Top Curr Chem (Z) 382, 13 (2024). https://doi.org/10.1007/s41061-024-00460-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-024-00460-1

Keywords

Navigation