Skip to main content
Log in

Molecular iodine catalyzed C(sp2)–H sulfenylation of biologically active enaminone compounds under mechanochemical conditions and studies on their biocidal activity including molecular docking and DFT

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Here we demonstrated a solvent free, mechanochemical I2 catalyzed C(sp2)–H sulfenylation of enaminones under grinding condition. Only catalytic amount of I2 is required on silica surface without any external heating. The reaction time has reduced to a great extent in comparison to their solution based counterpart. The frictional energy created by ball-mill on mesoporous silica materials has attracted much attention towards this mechanochemical approach for molecular heterogeneous catalysis. Their large surface area and well defined porous architecture certainly increase the catalytic ability of iodine in this developed protocol. Anti-microbial activities of our synthesized compounds were investigated against two gram positive (Staphylococcus aureus and Bacillus cereus) and two gram negative (Escherichia coli and Klebsiella pneumonia) bacteria. To understand the potency of these compounds (3a–3m) as antimalarial agents, molecular docking studies were also performed. Density functional theory was also used to investigate the chemical reactivity and kinetic stability of the compound 3a–3m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lea MC (1893) On endothermic reactions effected by mechanical force. Am J Sci 46:241–244

    Article  Google Scholar 

  2. Takacs L, Carey ML (2003) The father of mechanochemistry. Bull Hist Chem 1:26–34

    Google Scholar 

  3. Takacs L (2013) The historical development of mechanochemistry. Chem Soc Rev 42:7649–7659

    Article  CAS  PubMed  Google Scholar 

  4. Cheng H, Hernandez JC (2017) Mechanochemical ruthenium-catalyzed hydroarylations of alkynes under ball-milling conditions. Org Lett 19:6284–6287

    Article  CAS  PubMed  Google Scholar 

  5. Haley RA, Zellner AR, Krause JA, Guon H, Mack J (2016) Nickel catalysis in a high speed ball mill: a recyclable mechanochemical method for producing substituted cyclooctatetraene compounds. ACS Sustain Chem Eng 4:2464–2469

    Article  CAS  Google Scholar 

  6. James SL, Adams CJ, Bolm C, Braga D, Collier P, Friscic T, Grepioni F, Harris KDM, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steed JW, Waddell DC (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41:413–447

    Article  CAS  PubMed  Google Scholar 

  7. Wang G (2013) Mechanochemical organic synthesis. Chem Soc Rev 42:7668–7700

    Article  CAS  PubMed  Google Scholar 

  8. Burmeister CF, Stolle A, Schmidt R, Jacob K, Breitung-Faes S, Kwade A (2014) Experimental and computational investigation of knoevenagel condensation in planetary ball mills. Chem Eng Technol 37:857–864

    Article  CAS  Google Scholar 

  9. Schmidt R, Burmeister CF, Balaz M, KwadeA SA (2015) Effect of reaction parameters on the synthesis of 5-arylidene barbituric acid derivatives in ball mills. Org Process Res Dev 19:427–436

    Article  CAS  Google Scholar 

  10. Piras CC, Prieto SF, Borggraeve WMD (2019) Ball milling: a green technology for the preparation and functionalisation of nanocellulose derivatives. Nanoscale Adv 1:937–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moselage M, Li J, Ackermann L (2016) Cobalt-catalyzed C-H activation. ACS Catal 6:498

    Article  CAS  Google Scholar 

  12. Della Ca N, Fontana M, Motti E, Catellani M (2016) Pd/Norbornene: a winning combination for selective aromatic functionalization via C-H bond activation. Acc Chem Res 49:1389

    Article  CAS  PubMed  Google Scholar 

  13. Zhu RY, Farmer ME, Chen YQ, Yu JQ (2016) A simple and versatile amide directing group for C−H functionalizations. Angew Chem Int Ed 55:10578

    Article  CAS  Google Scholar 

  14. Drapeau MP, Gooßen LJ (2016) Carboxylic acids as directing groups for C−H bond functionalization. Chem Eur J 22:18654

    Article  Google Scholar 

  15. Yamaguchi J, Muto K, Itami K (2016) Nickel-catalyzed aromatic C-H functionalization. Top Curr Chem 55:374

    Google Scholar 

  16. Gao DW, GuQ ZC, You SL (2017) Synthesis of planar chiral ferrocenes via transition-metal-catalyzed direct C-H bond functionalization. Acc Chem Res 50:351

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt R, Fuhrmann S, Wondraczek L, Stolle A (2016) Influence of reactions parameters on the depolymerization of H2SO4- impregnated cellulose in planetary ball mills. Powder Technol 288:123–131

    Article  CAS  Google Scholar 

  18. Mocci R, Murgia S, Luca LD, Colacino E, Delogud F, Porcheddu A (2018) Ball-milling and cheap reagents breathe green life into the one hundred-year-old Hofmann reaction. Org Chem Front 5:531–538

    Article  CAS  Google Scholar 

  19. Fulmer DA, Shearouse WC, Medonza ST, Mack J (2009) Solvent-free Sonogashira coupling reaction via high speed ball milling. Green Chem 11:1821–1825

    Article  CAS  Google Scholar 

  20. Schneider F, Stolle A, Ondruschka B, Hopf H (2009) The Suzuki-Miyaura reaction under mechanochemical conditions. Org Process Res Dev 13:44–48

    Article  CAS  Google Scholar 

  21. Schneider F, Ondruschka B (2008) Mechanochemical solid-state Suzuki reactions using an in situ generated base. Chemsuschem 1:622–625

    Article  CAS  PubMed  Google Scholar 

  22. Waddell DC, Clark TD, Mack J (2012) Conducting moisture sensitive reactions under mechanochemical conditions. Tetrahedron Lett 53:4510–4513

    Article  CAS  Google Scholar 

  23. Wang GW, Dong YW, Wu P, Yuan TT, Shen YB (2008) Unexpected solvent-free cycloadditions of 1,3-cyclohexanediones to 1-(Pyridin-2-yl)-enones mediated by manganese(III) acetate in a ball mill. J Org Chem 73:7089

    Article  Google Scholar 

  24. Abedinifar F, Bahadorikhalili S, Larijani B, Mahdavi M, Verpoort F (2022) A review on the latest progress of C-S cross-coupling in diaryl sulfide synthesis: update from 2012 to 2021. Appl Organomet Chem 36:e6482

    Article  CAS  Google Scholar 

  25. Wang M, Jiang X (2018) Sulfur-Sulfur bond construction. Top Curr Chem 14:376

    Google Scholar 

  26. Nowrouzi N, Abbasi M, Shahidzadeha ES, Amaleh F (2022) C(sp2)–H bond sulfenylation of aminouracils and enaminones from aryl halides. New J Chem 46:10055–10061

    Article  CAS  Google Scholar 

  27. Zhang R, Ding H, Pu X, Qian Z, Xiao Y (2020) Recent advances in the synthesis of sulfides, sulfoxides and sulfones via C-S bond construction from non-halide substrates. Catalysts 10:1339

    Article  CAS  Google Scholar 

  28. Rostami A, Rostami A, Ghaderi A (2015) Copper-catalyzed thioetherification reaction of alkyl halides, triphenyltin chloride and arylboronic acids with nitroarenes in the presence of sulfur sources. J Org Chem 80:8694–8704

    Article  CAS  PubMed  Google Scholar 

  29. Naresh G, Kant R, Narender T (2014) Molecular iodine promoted divergent synthesis of benzimidazoles, benzothiazoles, and 2-benzyl-3-phenyl-3,4- dihydro-2H-benzo[e][1,2,4]thiadiazines. J Org Chem 79:3821–3829

    Article  CAS  PubMed  Google Scholar 

  30. Siddaraju Y, Prabhu KR (2016) Iodine-catalyzed cross dehydrogenative coupling reaction: a regioselective sulfenylation of imidazoheterocycles using dimethyl sulfoxide as an oxidant. J Org Chem 81:7838–7846

    Article  CAS  PubMed  Google Scholar 

  31. Ahmed AAR, Waheed EJ, Numan AT (2020) Synthesis, characterization, antibacterial study and efficiency of inhibition of new di-β-enaminone ligand and its complexes. J Phys Conf Ser 1660:012109

    Article  CAS  Google Scholar 

  32. Mahmud T, Rehman R, Gulzar A, Khalid A, Anwar J, Shafique U, Waheed-uz-Zaman SM (2010) Synthesis, characterization and study of antibacterial activity of enaminone complexes of zinc and iron. Arab J Chem 3:219–224

    Article  CAS  Google Scholar 

  33. Frisch MJT, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJ, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar S, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision E.01. Gaussian Inc., Wallingford CT

    Google Scholar 

  34. Sapariyaa NH, Vaghasiyaa BK, Thummara RP, Kamania RD, Patela KH, Thakorb P, Thakkarc SS, Rayc A, Raval DK (2017) Synthesis, characterization, in silico molecular docking study and biological evaluation of 5-(phenylthio) pyrazole based polyhydroquinoline core moiety. New J Chem 41:10686–10694

    Article  Google Scholar 

  35. StephensPJ DFJ, Chabalowski CF et al (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  Google Scholar 

  36. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    Article  CAS  Google Scholar 

  37. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Arjunan V, Devi L, Subbalakshmi R et al (2014) Synthesis, vibrational, NMR, quantum chemical and structure-activity relation studies of 2-hydroxy-4-methoxyacetophenone. Spectrochim Acta Part A Mol Biomol Spectrosc 130:164–177

    Article  CAS  Google Scholar 

  39. El-Gammal O, Rakha T, Metwally H et al (2014) Synthesis, characterization, DFT and biological studies of isatinpicolinohydrazone and its Zn (II), Cd (II) and Hg (II) complexes. Spectrochim Acta Part A 127:144–156

    Article  CAS  Google Scholar 

  40. Verma P, Kuwahara Y, Mori K, Raja R, Yamashita H (2020) Functionalized mesoporous SBA-15 silica: recent trends and catalytic applications. Nanoscale 12:11333–11363

    Article  CAS  PubMed  Google Scholar 

  41. Shen C, Zhang P, Sun Q, Bai S, Hor TSA, Liu X (2015) Recent advances in C-S bond formation via C–H bond functionalization and decarboxylation. Chem Soc Rev 44:291–314

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AI done the experimental work.KS done he computational calculations. AI and PC wrote the main manuscript text. All authors reviewed the manuscript., MB measured the bioactivity of the molecules, PG and RKD edited the manuscript.

Corresponding author

Correspondence to Pranab Ghosh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3792 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, A., Choudhury, P., Sarkar, K. et al. Molecular iodine catalyzed C(sp2)–H sulfenylation of biologically active enaminone compounds under mechanochemical conditions and studies on their biocidal activity including molecular docking and DFT. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10677-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10677-9

Keywords

Navigation