Skip to main content
Log in

Research Progress in Structure Synthesis, Properties, and Applications of Small-Molecule Silicone Surfactants

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Silicone surfactants have garnered significant research attention owing to their superior properties, such as wettability, ductility, and permeability. Small-molecular silicone surfactants with simple molecular structures outperform polymeric silicone surfactants in terms of surface activity, emulsification, wetting, foaming, and other areas. Moreover, silicone surfactants with small molecules exhibit a diverse and rich molecular structure. This review discusses various synthetic routes for the synthesis of different classes of surfactants, including single-chain, “umbrella” structure, double chain, bolaform, Gemini, and stimulus-responsive surfactants. The fundamental surface/interface properties of the synthesized surfactants are also highlighted. Additionally, these surfactants have demonstrated enormous potential in agricultural synergism, drug delivery, mineral flotation, enhanced oil recovery, separation, and extraction, and foam fire-fighting.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24

Similar content being viewed by others

Data Availability

Data openly available in a public repository.

References

  1. Avinash Bhadani TM (2016) Sukhprit Singh, Kenichi Sakai, Hideki Sakai, Masahiko Abe, Structural diversity, physicochemical properties and application of imidazolium surfactants: Recent advances. Adv Colloid Interface Sci 231:36–58

    Article  PubMed  Google Scholar 

  2. Pinazo A, Manresa MA, Marques AM, Bustelo M, Espuny MJ, Perez L (2016) Amino acid-based surfactants: New antimicrobial agents. Adv Colloid Interface Sci 228:17–39

    Article  CAS  PubMed  Google Scholar 

  3. Hou Baofeng RJ (2019) Meilong Fu, Yefei Wang, Chao Ma, Chen Jiang, Bo Yang, A novel high temperature tolerant and high salinity resistant gemini surfactant for enhanced oil recovery. J Mol Liq 296:1–8

    Google Scholar 

  4. Hussain SMS, Adewunmi AA, Mahboob A, Murtaza M, Zhou X, Kamal MS (2022) Fluorinated surfactants: A review on recent progress on synthesis and oilfield applications. Adv Colloid Interface Sci 303:102634

    Article  CAS  PubMed  Google Scholar 

  5. Frampton MB, Zelisko PM (2017) Biocatalysis in Silicon Chemistry. Chem Asian J 12(11):1153–1167

    Article  CAS  PubMed  Google Scholar 

  6. Anisimov AA, Temnikov MN, Krizhanovskiy I, Timoshina EI, Milenin SA, Peregudov AS, Dolgushin FM, Muzafarov AM (2021) A thiol–ene click reaction with preservation of the Si–H bond: a new approach for the synthesis of functional organosilicon compounds. New J Chem 45(13):5764–5769

    Article  CAS  Google Scholar 

  7. Wang, C. Synthesis, characterization and determination of surfactantproperty of hydrolysis resistant disilane surfactant in pesticide. Shandong Agricultural University, 2012.

  8. Ezhova AA, Gritskova IA, Chalykh AE, Levachev SM, Shragin DI, Chvalun SN, Malakhova YN, Muzafarov AM (2019) Behavior of organosilicon surfactants in Langmuir films on the surface of water. Polym Sci, Ser A 61(2):149–156

    Article  CAS  Google Scholar 

  9. Dipak D. Pukale, A. S. B., Nilesh L. Jadhav , Dipak V. Pinjari, Rahul R. Kulkarni, Review on Silicone Surfactants: Silicone-based Gemini Surfactants, Physicochemical Properties and Applications. Tenside Surfactants Detergents 2019, 56, 268–278.

  10. Zhu, X. Preparation and application of an amphiphilic silicon-containing polymer surfactant. Dalian University of Technology, 2022.

  11. Aramaki K, Fujii M, Sakanishi Y (2019) Rheological properties of silicone-surfactant-based wormlike micellar solution. Colloids Surf, A 581:123841–123847

    Article  CAS  Google Scholar 

  12. Sorrenti A Illa, O. O. R. M., Amphiphiles in aqueous solution: well beyond a soap bubble. Chem Soc Rev 2013, 42 (21), 8200–8219.

  13. Gonçalves RA, K. H., (2023) Björn Lindman, Cationic surfactants: A review. J Mol Liq 375:121335–121364

    Article  Google Scholar 

  14. Weiwei Zhao YW (2017) Coacervation with surfactants: From single-chain surfactants to gemini surfactants. Adv Colloid Interface Sci 239:199–212

    Article  PubMed  Google Scholar 

  15. Yuqiao Cheng SZ (2022) Jia Wang, Yue Zhao, Zhiting Zhang, Research progress in the synthesis and application of surfactants based on trisiloxane. J Mol Liq 362:119770–119783

    Article  Google Scholar 

  16. Jinglin Tan ML (2018) Zhigang Ye, Synthesis, micellar and surface properties of cationic trisiloxane surfactants with different siloxane hydrophobic groups. J Solution Chem 47(12):2082–2093

    Article  Google Scholar 

  17. Yue Huang MG, Feng S (2019) Synthesis and solution behavior of sulfonate-based silicone surfactants with specific atomically defined hydrophobic tails. Langmuir 35(30):9785–9793

    Article  PubMed  Google Scholar 

  18. Lina Meng WW, Lei Li, Shengyu Feng (2023) Interface adsorption and aggregation behavior of sulfonate-based anionic silicone surfactants in aqueous solution. ChemPlusChem 88(5):1–9

    Google Scholar 

  19. ling, L. b. L. J. b. C. h., Synthesis and properties of a sulfate surfactant from trisiloxane. China Surfactant Detergent & Cosmetics 2011, 41 (6), 1–4.

  20. Lina Meng WW, Lei Li, Shengyu Feng (2022) Syntheses, properties, and aggregation behavior of novel carboxylate-based silicone surfactants. ChemPlusChem 87(12):1–7

    Google Scholar 

  21. Li S. The synthesis of new-style trisiloxane surfactant and its properties study. Master, Shaanxi University of Science and Technology, 2016.

  22. Liangxian Huang YD, Jie Huang, Rong Gao, Qiufeng An (2011) Synthesis of anionic trisiloxane surfactants and its properties. Practical Chem 28(06):722–726

    Google Scholar 

  23. A., A., Ionic cooligomeric surfactants on the basic of epoxy compounds. Znanstvena Misel Journal 2019, 36, 12–23.

  24. Pricop L, Fortună ME, Popovici D, Asandulesa M, Racles C, Zaltariov MF, Marangoci N, Savin M, Harabagiu V (2019) Nickel complexes of guanidine functionalized trisiloxane. J Inorg Organomet Polym Mater 29(6):2024–2034

    Article  CAS  Google Scholar 

  25. Snow SA, W. N. F., and Michael J. (1991) Owen, Zwitterionic organofunctional siloxanes as aqueous surfactants_ synthesis and characterization of betaine functional siloxanes and their comparison to sulfobetaine functional siloxanes. Langmuir 7:868–871

    Article  CAS  Google Scholar 

  26. Yongxiang Miao JT (2019) Miaomiao Lin, Ziyan He Synthesis and surface activities of novel polyether based trisiloxane surfactants. China Sufactant Detergent & Cosmetics 49(1):1–4

    Google Scholar 

  27. Guoyong Wang ZD, Wei Zhang, Qianyong Cao (2009) Synthesis and surface properties of trisiloxane-modified oligo(ethylene oxide). Tenside Surf Det 46(4):1–4

    Google Scholar 

  28. Gong H (2014) Study on the Synthesis and Performances of non-ionicpolyether modified trisiloxanes surfactant. Zhongkai University of Agriculture and Engineering, Master

    Google Scholar 

  29. Jinglin Tan YL, Jinrong Zhong, Yuefei Zhang (2022) Effect of spacer length on the micellization of cationic trisiloxane surfactants. J Mol Liq 364:120002–120009

    Article  Google Scholar 

  30. Jinglin Tan ZH, Yongxiang Miao, Dezhi Zhou (2019) Effect of Steric Hindrance on the Aggregation Behavior of Cationic Silicone Surfactants in Aqueous Solutions. J Solution Chem 48(6):891–904

    Article  Google Scholar 

  31. Jinglin Tan JS, Cuiping Tian, Zhiman Liao, Ping Yan (2019) Effect of sodium halide on micellar and surface properties of cationic silicone surfactants. J Surfactants Deterg 22(1):125–130

    Article  Google Scholar 

  32. Jinxing Li YB, Wanxu Wang, Xiumei Tai, Guoyong Wang (2019) Green glucamine-based trisiloxane surfactant: surface activity, aggregate behavior, and superspreading on hydrophobic surfaces. ACS Sustainable Chemistry & Engineering 7(4):4390–4398

    Article  Google Scholar 

  33. Jinglin Tan FC, Hao Chen, Kangqiang Liu, Desi Sun (2019) Aggregation properties of siloxane surfactants with phenyldimethylsiloxyl groups in aqueous solution. J Mol Liq 289:111158–111165

    Article  Google Scholar 

  34. Jinglin Tan ZH, Yongxiang Miao, Miaomiao Lin (2019) Synthesis and surface properties of polyether-based silicone surfactants with different siloxane groups. J Surfactants Deterg 22(4):875–883

    Article  Google Scholar 

  35. Jinglin Tan DM, Shengyu Feng, Changqiao Zhang (2013) Effect of headgroups on the aggregation behavior of cationic silicone surfactants in aqueous solution. Colloids Surf, A 417:146–153

    Article  Google Scholar 

  36. Liying Fang JT, Yan Zheng, Ge Yang, Jiangtao Yu, Shengyu Feng (2017) Synthesis, aggregation behavior of novel cationic silicone surfactants in aqueous solution and their application in metal extraction. J Mol Liq 231:134–141

    Article  Google Scholar 

  37. Guoyong Wang WQ, Zhiping Du, Qianyong Cao, Qiuxiao Li (2011) Adsorption and aggregation behavior of tetrasiloxane-tailed surfactants containing oligo(ethylene oxide) methyl ether and a sugar moiety. J Phys Chem B 115(14):3811–3818

    Article  PubMed  Google Scholar 

  38. Snow SA (1993) Synthesis, characterization, stability, aqueous surface activity, and aqueous solution aggregation of the novel, cationic siloxane surfactants (Me3SiO)2Si(Me)-(CH2)3+NMe2(CH2)2OR X- (R = hydrogen, acetyl, N-phenylcarbamyl; X = chloride, bromide, iodide, nitrate, methyl sulfate). Langmuir 9:424–430

    Article  CAS  Google Scholar 

  39. Yang Cao ZD, Guoyong Wang (2011) Synthesis and surface activity of trisiloxane based imidazolium ionic liquid surfactant. China Surfactant Detergent & Cosmetics 41(6):390–394

    Google Scholar 

  40. Yu Zhang, L. Z. Preparation method of 3-aminoalkyl trisiloxane. CN101024652A, 2007.3.23, 2007.

  41. Zhigang Tian, H. D. The invention relates to a preparation method of γ-aminopropyl trisiloxane. CN 108409779B, 2018.5.15, 2018.

  42. Qingzhao Shi WQ (2016) Synthesis of siloxane polyether surfactants and their solubility in supercritical CO2. J Surfactants Deterg 20(2):453–458

    Google Scholar 

  43. Xiang Li ZD (2014) Enze Li, Ping Li, Guoyong Wang, Butynediol-ethoxylate based trisiloxane: Structural characterization and physico-chemical properties in water. J Mol Liq 197:197–203

    Article  Google Scholar 

  44. Mi Zhang BN, Yanyun Bai, Xiumei Tai, Guoyong Wang (2021) Solution properties of mixed system containing butynediol-ethoxylate polysiloxanes and polyether trisiloxane surfactant. Colloid and Interface Science Communications 41:100367–100375

    Article  Google Scholar 

  45. Daniel J. Keddie, J. B. G., Ferdinand Gonzaga, Michael A. Brook,, Tim R. Dargaville, Amphiphilic Silicone Architectures via Anaerobic Thiol-Ene Chemistry. Organic letters 2011, 13 ( 22), 6006–6009.

  46. Jinglin Tan XX, Ziyan He, Fei Cao, Desi Sun (2019) Aggregation behavior of polyether based siloxane surfactants in aqueous solutions: effect of alkyl groups and steric hindrance. J Phys Chem B 123(6):1390–1399

    Article  PubMed  Google Scholar 

  47. Huang, Y. Preparation and Properties of Anionic Silicone Surfactants. Shandong University, 2020.

  48. Jinglin Tan PZ, Depeng Ma, Shengyu Feng, Changqiao Zhang (2013) Effect of hydrophobic chains on the aggregation behavior of cationic silicone surfactants in aqueous solution. Colloid Polym Sci 291(6):1487–1494

    Article  Google Scholar 

  49. Lina Meng ZC, Shengyu Feng (2022) Synthesis and properties of sodium carboxylate silicone surfactant via thiol-ene “click” reaction. Colloid and Interface Science Communications 49:100642–100648

    Article  Google Scholar 

  50. Hill RM (2002) Silicone surfactants-new developments. Curr Opin Colloid Interface Sci 7(255):255–261

    Article  CAS  Google Scholar 

  51. Czajka A, Hazell G, Eastoe J (2015) Surfactants at the design limit. Langmuir 31(30):8205–8217

    Article  CAS  PubMed  Google Scholar 

  52. Chong Cao LZ, XiaoXi Zhang, FengPei Du (2013) Effect of gum arabic on the surface tension and surface dilational rheology of trisiloxane surfactant. Food Hydrocolloids 30(1):456–462

    Article  Google Scholar 

  53. Jinping Dong GM (2004) Nanoscale aggregate structures of trisiloxane surfactants at the solid-liquid interface. Langmuir 20:2695–2700

    Article  PubMed  Google Scholar 

  54. Jinglin Tan ZH, Yang Bai, Ping Yan (2019) Synthesis, characterization and surface properties of novel polyether based siloxane surfactants. J Dispersion Sci Technol 41(2):188–194

    Google Scholar 

  55. Hao Chen JT (2020) Aggregation behavior and intermolecular interaction of cationic trisiloxane surfactants: effects of unsaturation. Langmuir 36(48):14582–14588

    Article  PubMed  Google Scholar 

  56. Liying Fang JT (2016) Yan Zheng, Haonan Li, Chenwei Li, Shengyu Feng, Effect of organic salts on the aggregation behavior of tri-(trimethylsiloxy)silylpropylpyridinium chloride in aqueous solution. Colloids Surf, A 509:48–55

    Article  Google Scholar 

  57. Mona Kharazi JS, Simin Asadabadi (2021) Review on amphiphilic ionic liquids as new surfactants: from fundamentals to applications. Top Curr Chem 380(1):1–44

    Google Scholar 

  58. Du Zhiping E, L., Yang Cao, Xiang Li, Guoyong Wang (2014) Synthesis of trisiloxane-tailed surface active ionic liquids and their aggregation behavior in aqueous solution. Colloids Surf, A 441:744–751

    Article  Google Scholar 

  59. N.A. Ivanova, V. M. S., Wetting of low free energy surfaces by aqueous surfactant solutions. Current Opinion in Colloid & Interface Science 2011, 16 (4), 285–291.

  60. Wenshan Qu, G. W., Lei Tao (2012) Surface activity and spreading ability of new trisiloxane-tailed dicephalic surfactants. Colloid J 74(5):558–563

    Article  Google Scholar 

  61. Carolina F. Jesus, A. A. S. A., Sónia M. Fiuz, Dina Murtinho, Filipe E. Antunes, Mini-review: Synthetic methods for the production of cationic sugar-based surfactants. Journal of Molecular Liquids 2021, 342, 117389–117398.

  62. Fu Han YL, Yadi Gao, Yawen Zhou, Baocai Xu (2014) Synthesis and characterization of a quaternized glucosamide-based trisiloxane surfactant. J Surfactants Deterg 17(4):733–737

    Article  Google Scholar 

  63. Guoyong Wang ZD, Qiuxiao Li, Wei Zhang (2010) Carbohydrate-modified siloxane surfactants and their adsorption and aggregation behavior in aqueous solution. J Phys Chem B 114:6872–6877

    Article  PubMed  Google Scholar 

  64. Tadashi Sugahara YT, Masaaki Akamatsu, Kenichi Sakai, Masahiko Abe, Hideki Sakai (2018) Effect of inorganic and organic counterions on interfacial properties of oleic acid-based gemini surfactants. Colloids Surf, A 538:73–78

    Article  Google Scholar 

  65. JinglinTan SF (2014) Effect of counterions on micellization of pyrrolidinium based silicone ionic liquids in aqueous solutions. J Chem Eng Data 59(6):1830–1834

    Article  Google Scholar 

  66. Yue Huang LM, Mengdong Guo, Peijian Zhao, Hongyan Zhang, Shuwen Chen, Jie Zhang, Shengyu Feng (2018) Synthesis, properties, and aggregation behavior of tetrasiloxane-based anionic surfactants. Langmuir 34(14):4382–4389

    Article  PubMed  Google Scholar 

  67. Huiyong Wang QF, Jianji Wang, Hucheng Zhang (2010) Salt effect on the aggregation behavior of 1-decyl-3-methylimidazolium bromide in aqueous solutions. J Phys Chem B 114:1380–1387

    Article  PubMed  Google Scholar 

  68. Jinglin Tan JX, Yuefei Zhang (2023) Synthesis and micellization of carbosilane sulfonate surfactants with short alkyl chains. Langmuir 39(45):15997–16005

    Article  PubMed  Google Scholar 

  69. Yue Huang MG, Jinglin Tan, Shengyu Feng (2020) Impact of molecular architecture on surface properties and aqueous stabilities of silicone-based carboxylate surfactants. Langmuir 36(8):2023–2029

    Article  PubMed  Google Scholar 

  70. Jinglin Tan YL, Zhigang Ye (2019) Synthesis, aggregation behavior of polyether based carbosilane surfactants in aqueous solution. J Mol Liq 279:657–661

    Article  Google Scholar 

  71. Carmen Racles TH, Aurelia Ioanid (2006) Siloxane surfactants in polymer nanoparticles formulation. Appl Organomet Chem 20(4):235–245

    Article  Google Scholar 

  72. Zhongli Peng CL, Jianxiong Lai (2009) Synthesis and properties of novel double-tail trisiloxane surfactants. J Surfactants Deterg 12(4):331–336

    Article  Google Scholar 

  73. Masanobu Sagisaka, T. E., Kazuki Fujita, Yasushi Umetsu, Suzuna Osaki, Tsuyoshi Narumi,; Atsushi Yoshizawa, A. M., Frédéric Guittard, Christopher Hill, Julian Eastoe, Very low surface tensions with “Hedgehog” surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017, 631, 1–35.

  74. Christopher Hill, Y. U., Kazuki Fujita, Takumi Endo, Kodai Sato, Atsushi Yoshizawa, Sarah E. Rogers, Julian Eastoe, Masanobu Sagisaka, Design of surfactant tails for effective surface tension reduction and micellization in water and/or supercritical CO2. Langmuir 2020, 36 (48), 14829–14840.

  75. Kovalchuk, N. M.; Sagisaka, M.; Osaki, S.; Simmons, M. J. H., Superspreading performance of branched ionic trimethylsilyl surfactant Mg(AOTSiC)2. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020, 604.

  76. Zhihao Xu, M. M., Ye Fan, Yinjun Fang, Yongmin Zhang (2022) Silicon-hybrid ionic liquid surfactant derived from natural oleic acid: Synthesis and properties of an aqueous solution. J Mol Liq 349:118453–118461

    Article  Google Scholar 

  77. XueLi Liu YC (2022) YiWen Chen, WeiKang Peng, HanChun Liu, Preparation of carbosilane quaternary ammonium surfactants and surface activity. Tenside, Surfactants, Deterg 59(5):424–432

    Article  Google Scholar 

  78. Taoyan Mao YW, Cheng Zheng, Wenjing Cheng, Zhenqiang Zhang, Yiting Zhu, Runhao Wang, Zhaowen Zeng (2019) Antibacterial cotton fabrics coated by biodegradable cationic silicone softeners. J Surfactants Deterg 22(6):1429–1443

    Article  Google Scholar 

  79. Singh, G.; Singh, A.; Chowdhary, K.; Satija, P.; Sanchita; Kalra, P.; Sharma, G.; Sinha, S.; Sehgal, R., Synthesis, Characterization, Hydrolytic stability, nickel(II) chloride complex and anti-parasitic activity of pyrene-tethered silatranes. Polycyclic Aromatic Compounds 2019, 41 (1), 173–183.

  80. Mark B. Frampton, A. B., Zachary Raczywolski, Alan Castleb, Paul M. Zelisko, Exploring the utility of hybrid siloxane-phosphocholine (SiPC) liposomes as drug delivery vehicles. RSC Advances 2021, 11 (21), 13014–13023.

  81. Mark B. Frampton, M. H. L. N., Mitchell DiPasqualec, Robert Dickd, Drew Marquardt, Paul M. Zelisko, Characterization of self-assembled hybrid siloxane-phosphocholine bilayers. Chemistry and Physics of Lipids 2018, 216, 1–8.

  82. Zhongli Peng JH, Furong Chen, Qinghua Ye, Qiaoyu Li (2011) Syntheses and properties of ethoxylated double-tail trisiloxane surfactants containing a propanetrioxy spacer. Appl Organomet Chem 25(5):383–389

    Article  Google Scholar 

  83. Zhongli Peng CL, Minling Xu (2009) Influence of substructures on the spreading ability and hydrolysis resistance of double-tail trisiloxane surfactants. J Surfactants Deterg 13(1):75–81

    Article  Google Scholar 

  84. Renu Sharma AK, Maryam Abdinejad, Rakesh Kumar Mahajan, Heinz-Bernhard Kraatz (2017) Advances in the synthesis, molecular architectures and potential applications of gemini surfactants. Adv Coll Interface Sci 248:35–68

    Article  Google Scholar 

  85. Xiaohui Zhao WL, Dong An, Zhiwen Ye (2015) Synthesis and properties of tetrasiloxane Gemini imidazolium surfactants. Colloid Polym Sci 294(3):491–500

    Article  Google Scholar 

  86. Zhao, X. Synthesis and Aggregation Behaviors of Gemini Imidazolium Surfactants and Their Siloxane Derivatives. Nanjing University of Science and Technology, 2017.

  87. CaiPing Chen FL (2018) QingXiao Tong, Three tetrasiloxane-tailed cationic gemini surfactants: The effect of different spacer rigidity on surface properties and aggregation behaviors. J Mol Liq 266:504–513

    Article  Google Scholar 

  88. Haibo Zhu EA, Yin Chen, Youssef Saih, WeiBing Liu, JeanMarie Basset, Akshaya Kumar Samal (2016) Organosilane with Gemini-type structure as the mesoporogen for the synthesis of the hierarchical porous ZSM-5 zeolite. Langmuir 32(8):2085–2092

    Article  PubMed  Google Scholar 

  89. Fu Han GZ (2004) New family of Gemini surfactants with glucosamide-based trisiloxane. Colloids Surf, A 237(1–3):79–85

    Article  Google Scholar 

  90. Guoyong Wang WQ, Zhiping Qu, Wanxu Wang, Qiuxiao Li (2013) Adsorption and aggregation behaviors of tetrasiloxane-tailed gemini surfactants with (EO)m spacers. J Phys Chem B 117(11):3154–3160

    Article  CAS  PubMed  Google Scholar 

  91. Guoyong Wang DZ (2014) Zhiping Du, Ping Li, Spontaneous vesicle formation from trisiloxane-tailed gemini surfactant. J Ind Eng Chem 20(4):1247–1250

    Article  Google Scholar 

  92. Yiyeol Lyu, S. H. Y., Jeongkuk Shon, Seok Chang,Lyong Sun Pu,Sangyun Lee, Jae Eui Yie, Kookheon Char,Galen D. Stucky, Ji Man Kim, Highly Stable Mesoporous Metal Oxides Using Nano-Propping Hybrid Gemini Surfactants. Journal of the American Chemical Society 2004, 126, 2310–2311.

  93. Wenhui Zhao YC, Shuang Lu, Leigang Su, Nan Wang, Jiaqi Pu (2023) Synthesis and surface activity of two novel phosphate silicone surfactants. J Mol Liq 390:123154–123163

    Article  Google Scholar 

  94. Yun Yan TL, Jianbin Huang (2009) Recent advances in the mixed systems of bolaamphiphiles and oppositely charged conventional surfactants. J Colloid Interface Sci 337(1):1–10

    Article  PubMed  Google Scholar 

  95. Jinglin Tan MX, Qinghua Hu (2019) Aggregation behavior of “linear” trisiloxane surfactant with different terminal groups (CH3-, ClCH2-, and CF3-) in Aqueous Solution. J Phys Chem B 123(16):3543–3549

    Article  PubMed  Google Scholar 

  96. Jinglin Tan YFZ (2021) Synthesis and micellization of cationic trisiloxane surfactants with poly(ethylene glycol). Colloids Surf, A 634:127946–127946

    Google Scholar 

  97. Krasovskiy VG, Gorbatsevich OB, Talalaeva EV, Glukhov LM, Chernikova EA, Kustov LM (2022) Synthesis and properties of dicationic ionic liquids with pentasiloxane linker. Mendeleev Commun 32(4):551–553

    Article  CAS  Google Scholar 

  98. E.V. Talalaeva, A. A. K., N.G. Vasilenko, N.V. Demchenko, G.V. Cherkaev, A.S. Goloveshkin, A.M. Muzafarov, Selective formation of 1,5-disodiumoxyhexamethyltrisiloxane in the reaction of dimethylsiloxanes and sodium hydroxide. Journal of Organometallic Chemistry 2020, 906, 121050–121080.

  99. Robert Kieffer, M. P., Karsten Pelz, Ute Baumeister, Feng Liu, Harald Hahn, Heinrich Lang, Goran Ungar, Carsten Tschierske, Siloxanes and carbosilanes as new building blocks for T-shaped bolaamphiphilic LC molecules. Soft Matter 2009, 5 (6).

  100. Saeid Dowlati RM, Lena Hohl, Reinhard Miller, Matthias Kraume (2023) Advances in CO(2)-switchable surfactants towards the fabrication and application of responsive colloids. Adv Coll Interface Sci 315:102907–102930

    Article  Google Scholar 

  101. Meng Mua QS, Zhihao Xu, Xing Zhang, Heng Liu, Shanjun Zhao, Yongmin Zhang (2023) pH-responsive, salt-resistant, and highly stable foam based on a silicone-containing dynamic imine surfactant. J Mol Liq 374:121236–121247

    Article  Google Scholar 

  102. Xu, Z. Synthesis and Properties of Silicone-Containing Surfactants. master, Jiangnan University, 2022.

  103. An Chen JC, Duo Wang, Jianhong Xu, Hongbo Zeng (2020) CO(2)/N(2)-responsive oil-in-water emulsions using a novel switchable surfactant. J Colloid Interface Sci 571:134–141

    Article  PubMed  Google Scholar 

  104. Vittoria M. Blasucci, R. H., Pamela Pollet, Charles L. Liotta, Charles A. Eckert, Reversible ionic liquids designed for facile separations. Fluid Phase Equilibria 2010, 294 (1–2), 1–6.

  105. Amy L. Rohan, J. R. S., Kyle M. Flack, Charles L. Liotta, Ryan J. Hart,Swetha Sivaswamy, Elizabeth J. Biddinger,Manish Talreja,Manjusha Verma,Sean Faltermeier,Paul T. Nielsen,Pamela Pollet,Charles A. Eckert, The synthesis and the chemical and physical properties of non-aqueous silylamine solvents for carbon dioxide capture. ChemSusChem 2012, 5 (11), 2181–2188.

  106. Vittoria Blasucci, R. H., Veronica Llopis Mestre, Dominique Julia Hahne, Melissa Burlager, Hillary Huttenhower, Beng Joo Reginald Thio, Pamela Pollet, Charles L. Liotta, Charles A. Eckert Single component, reversible ionic liquids for energy applications. Fuel 2010, 89 (6), 1315–1319.

  107. Hideaki Shirota EW (2005) Castner, Why are viscosities lower for ionic liquids with -CH2Si(CH3)3 vs -CH2C(CH3)3 substitutions on the imidazolium cations? J Phys Chem B 109(46):21576–21585

    Article  PubMed  Google Scholar 

  108. Madeleine Taylor, S. M. L., Cleo L. Davie-Martin, Trudyanne S. Geoghegan, Kimberly J. Hageman, Understanding trends in pesticide volatilization from agricultural fields using the pesticide loss via volatilization model. Environ Sci Technol 2020, 54 (4), 2202–2209.

  109. Amandine Michel , C. D., Martina Böni , Michael Burkhardt, Heinz-Jürgen Brauch, Eckhard Worch, Frank Thomas Lange, Mobility of a polyether trisiloxane surfactant in soil: soil/water distribution coefficients and leaching in a soil column. Water Air Soil Pollut 2016, 227 (2).

  110. Huilin Xie HY (2018) Weixin Zhang, Wenbin Hu, Xinhua Zhou, Pepijn Prinsen, Rafael Luque, A chitosan modified Pt/SiO2 catalyst for the synthesis of 3-poly(ethylene glycol) propyl ether-heptamethyltrisiloxane applied as agricultural synergistic agent. Catal Commun 104:118–122

    Article  Google Scholar 

  111. Yunfeng Yan HH, Tianrui Ren, Yisheng Xu, Quanxi Wang, Wenping Xu (2013) Utilization of environmental waste cyanobacteria as a pesticide carrier: Studies on controlled release and photostability of avermectin. Colloids Surf, B 102:341–347

    Article  Google Scholar 

  112. Xiyang Zhou DZ (2016) Surface activity and spreading properties of water-based avermectin microemulsions containing novel siloxane surfactants. Phosphorus Sulfur Silicon Relat Elem 192(1):9–13

    Article  Google Scholar 

  113. Ming Zhao HZ, Long Chen, Li Haoa, Huayao Chena, Xinhua Zhou (2020) Carboxymethyl chitosan grafted trisiloxane surfactant nanoparticles with pH sensitivity for sustained release of pesticide. Carbohydr Polym 243:116433–116445

    Article  PubMed  Google Scholar 

  114. Yaowen Xing MX, Xiahui Gui, Yijun Cao, Martin Rudolph, Hans-Jürgen Butt, Michael Kappl (2019) The role of surface forces in mineral flotation. Curr Opin Colloid Interface Sci 44:143–152

    Google Scholar 

  115. Zongxin Li YF, Zhan Li, Nan Nan, Yimin Zhu, Yiwen Li (2019) Froth flotation giant surfactants. Polymer 162:58–62

    Article  Google Scholar 

  116. Zhe Yang, Y. L., Maoyan An, Hourui Ren, Xiaodong Hao, Xingwei Song, Zechen Liu, Composition characteristics of siloxane derived waste lubricating oil and its effect on low-rank coal flotation. Fuel 2021, 305.

  117. Xumeng Chen YP (2018) Managing clay minerals in froth flotation—A critical review. Miner Process Extr Metall Rev 39(5):289–307

    Article  Google Scholar 

  118. Rongdong Deng WZ, Jiangang Ku, Zhengguo Yang, Yuan Hu (2017) Synthesis of a cationic organic silicone surfactant and its application in the flotation of smithsonite. Int J Miner Process 167:113–121

    Article  Google Scholar 

  119. Shuyi Shuai , Z. H., Vladimir E. Burov , Vladimir Z. Poilov , Fangxu Li, Hongling Wang, Rukuan Liu, Shiyong Zhang, Chen Cheng, Wenyuan Li , Xinyang Yu , Guichun He, Weng Fu, Flotation separation of wolframite from calcite using a new trisiloxane surfactant as collector. International Journal of Mining Science and Technology 2023, 5, 1–9.

  120. Zhiqiang Huang HZ, Shuai Wang, Liuyin Xia, Gang Zhao, Guangyi Liu (2014) Gemini trisiloxane surfactant: Synthesis and flotation of aluminosilicate minerals. Miner Eng 56:145–154

    Article  Google Scholar 

  121. Anne Patricia, T. N. Siloxane-containing phospholipids as potential drug delivery systems. Brock University, 2019.

  122. Sounouvou HT, A. L., G´eraldine Piel, Brigitte Evrard (2022) Silicones in dermatological topical drug formulation: Overview and advances. Int J Pharm 625:122111–122125

    Article  CAS  PubMed  Google Scholar 

  123. Racles C (2010) Siloxane-based surfactants containing tromethamol units. Soft Mater 8(3):263–273

    Article  CAS  Google Scholar 

  124. Nandhibatla V Sastry, D. K. S., Amit D Thummar, Gunjan Verma, P.A. Hassan, Effect of hydrocarbon surfactants on dexamethasone solubilization into silicone surfactant micelles in aqueous media and its release from agar films as carriers. Journal of Molecular Liquids 2017, 225, 11–19.

  125. Lu Tong YY, Xiaoyu Luan, Jinglin Shen, Xia Xin (2017) Supramolecular hydrogels facilitated by α-cyclodextrin and silicone surfactants and their use for drug release. Colloids Surf, A 522:470–476

    Article  Google Scholar 

  126. Carmen Racles MC, Mirela Zaltariov, Mihai Iacob, Maria Butnaru (2019) Siloxane-based compounds with tailored surface properties for health and environment. Phosphorus Sulfur Silicon Relat Elem 194(10):972–977

    Article  Google Scholar 

  127. Asghar Gandomkar FT, Masoud Riazi (2021) CO2 mobility control by small molecule thickeners during secondary and tertiary enhanced oil recovery. The Canadian Journal of Chemical Engineering 99(6):1352–1362

    Article  Google Scholar 

  128. Nilanjan Pal XZ, Muhammad Ali, Ajay Mandal, Hussein Hoteit (2022) Carbon dioxide thickening: A review of technological aspects, advances and challenges for oilfield application. Fuel 315:122947–122969

    Article  Google Scholar 

  129. Mark D. Doherty, J. J. L., Aman Dhuwe, Michael J. O’Brien, Robert J. Perry, Eric J. Beckman, Robert M. Enick, Small molecule cyclic amide and urea based thickeners for organic and sc-CO2/organic solutions. Energy & Fuels 2016, 30 (7), 5601–5610.

  130. Oguntade Tomiwa Isaac, H. P., Babalola Aisosa Oni, Fadairo Adesina Samson, Surfactants employed in conventional and unconventional reservoirs for enhanced oil recovery—A review. Energy Reports 2022, 8, 2806–2830.

  131. Li, J. Synthesis and Properties of silicon-containing surface active ionic liquids. Hebei University of Science and Technology 2023.

  132. Tianchi Liu JC (2021) Extraction and separation of heavy rare earth elements: A review. Sep Purif Technol 276:119263–119286

    Article  Google Scholar 

  133. Yan Zheng LF, Yan Yan, Shujie Lin, Zhaohui Liu, Yanzhao Yang (2016) Extraction of palladium (II) by a silicone ionic liquid-based microemulsion system from chloride medium. Sep Purif Technol 169:289–295

    Article  Google Scholar 

  134. Jinglin Tan YZ (2022) Trisiloxane functionalized melamine sponges for oil water separation. Colloids Surf, A 634:127972–127981

    Article  Google Scholar 

  135. Giles SL, A. W. S., Katherine M., Hinnant, Ramagopal Ananth (2019) Modulation of fluorocarbon surfactant diffusion with diethylene glycol butyl ether for improved foam characteristics and fire suppression. Colloids Surf, A 579:123660–123670

    Article  CAS  Google Scholar 

  136. Alexander V. Vinogradov, D. K., Iosif Abduragimov, Gennadii Kuprin, Evgeniy Serebriyakov, Vladimir V. Vinogradov, Silica Foams for Fire Prevention and Firefighting. ACS Appl Mater Interfaces 2016, 8 (1), 294–301.

  137. Youjie Sheng SZ, Die Hu, Li Ma, Yang Li (2023) Investigation on thermal stability of highly stable fluorine-free foam co-stabilized by silica nanoparticles and multi-component surfactants. J Mol Liq 382:122039–122050

    Article  Google Scholar 

  138. Brian D. Etz , M. M., Shubham Vyas ,Manoj K. Shukla, High-temperature decomposition chemistry of trimethylsiloxane surfactants, a potential Fluorine-Free replacement for fire suppression. Chemosphere 2022, 308, 136351–136361.

  139. Anirudha Banerjee YL (2021) Essential factor of perfluoroalkyl surfactants contributing to efficacy in firefighting foams. Langmuir 37(30):8937–8944

    Article  PubMed  Google Scholar 

  140. Deriabin KV, Islamova RM (2022) Ferrocenyl-containing oligosiloxanes and polysiloxanes: synthesis, properties, and application. Polym Sci. Ser. C 64(2):95–109

    Article  CAS  Google Scholar 

Download references

Funding

There is no funding for this paper.

Author information

Authors and Affiliations

Authors

Contributions

Wenhui Zhao: conceptualization, writing-original draft, and writing-review & editing. Yuqiao Cheng: conceptualization, investigation. Jiaqi Pu: writing-original draft. Leigang Su: methodology, resources. Nan Wang: supervision. Yinhao Cao: project administration. Lijun Liu: visualization.

Corresponding author

Correspondence to Yuqiao Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Cheng, Y., Pu, J. et al. Research Progress in Structure Synthesis, Properties, and Applications of Small-Molecule Silicone Surfactants. Top Curr Chem (Z) 382, 11 (2024). https://doi.org/10.1007/s41061-024-00457-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-024-00457-w

Keywords

Navigation