In this section, the flow photoreactors specifically designed to use solar light will be described, including a brief description of their relevant synthetic applications. Almost all of them make use of solar concentrating devices to increase the photon flux toward the irradiated capillary or tube. The only exception in this regard is constituted by the Sunflow reactor [20], that instead employed a long capillary (25 m of FEP) to increase the solar-collecting area.
Solfin
The SOLFIN (SOLar synthesis of FINe chemicals) facility hosts two compound parabolic concentrators (CPC) reactors built between 1996 and 1997 at the Plataforma Solar De Almería, in Spain [21]. The first reactor is constituted by an array of eight 48-mm tubes placed in the focus of a 152 mm wide and 1-m long CPC-collector with aluminum reflectors. To increase the photon flux directed toward the reactor, the unit is tilted south 35° to compensate for the site latitude. Given that the acceptance angle of the CPC is about 60° on either side of the normal, it was claimed that not only direct light, but also a good fraction of diffuse sunlight is directed towards the tube. Another reactor based on a similar design was also built for reactions on a smaller scale, employing a single 32 mm OD Liebig-type glass condenser mounted in the focus of a 1-m long and 20 cm wide reflecting parabola. For both the reactor designs the optical concentration was about 4 [22]. The condenser is operated in the opposite way than usual: the outer layer hosts the recirculating reaction mixture, while on the inside the cooling water maintains the reaction temperature constants (see Fig. 5).
The SOLFIN reactor has been used both for photochemical reaction, including 2 + 2 Paternó-Büchi cycloadditions, photoisomerization and photocyclization, and photocatalytic reaction with TiO2 and benzophenone as photocatalysts.
Gilbert and co-workers [24] in 1998 used the single-loop SOLFIN reactor for the 2 + 2 Paternó-Buchi cycloaddition of arylethene with 2-substituted naphthoquinones (Scheme 1). Under solar irradiation, the head-to-head adduct was obtained in a quantitative yield on a 10 g scale (18.5 mmol) after 6 h of irradiation, with a productivity of \(15.4 \;{\text{mmol}}\,{\text{m}}^{{- 2}}\,{\text{h}}^{{- 1}}\). Interestingly, no byproducts were observed with reaction temperatures up to 60 °C, meaning that the water cooling capabilities of the SOLFIN were not needed in this case. Due to the low extinction coefficient of the naphthoquinone in the visible range, increasing the substrate concentration up to 6% w/v resulted in an extension of the absorption cut-off (defined as absorbance of 1.5) up to 430 nm, increasing the reaction rate.
Scheme 1The 2 + 2 photocycloaddition performed in the SOLFIN reactor powered by solar irradiation. Higher selectivity was obtained using solar light as opposed to a 125 W medium pressure mercury lamp
Another photochemical reaction investigated with the SOLFIN reactor was the cyclization of α,β-unsaturated O-acetyloximes [25]. Due to the UV-A absorption of the substrate, the smaller SOLFIN reactor with Pyrex glass was used. After initial E,Z-photoisomerization at both C–C and C–N double bonds, the E,Z-isomer undergoes a photocyclization to the corresponding dihydroquinoline, followed by rapid elimination of acetate yielding the aromatic quinoline. This means that the process needs at least two photons (E,Z-isomerization and cyclization) per molecule. A series of O-acetyloximes were reacted under solar irradiation. For the naphthyl derivative, 5 g of starting material (18 mmol) were fully converted in 6 h, resulting in the corresponding quinoline in 96% isolated yield (Scheme 2). The reaction productivity, despite the two-photon process, was still about \(15 \;{\text{mmol}}\,{\text{m}}^{{- 2}}\,{\text{h}}^{{- 1}}\), comparable with that observed for the 2 + 2 cycloaddition in the previous example.
Scheme 2Photoisomerization and photocyclization of 2-napthylidenecyclopentanone oxime O-acetate in natural sunlight with the SOLFIN reactor
Mechanistically similar to the previous example is the photocyclization of 1,2-diheteroarylethylenes to synthesize thiohelicenes (Scheme 3) reported by Caronna and co-workers [26]. In this case, a faster kinetic profile was observed by irradiation with concentrated sunlight: reaction completion was achieved in 2 h as opposed to the 10 h needed in the lab with a Rayonet reactor equipped with 16 lamps (8 W each).
Scheme 3The photochemical cyclization of 1,2 dithiophenylethylene performed in the SOLFIN reactor
More recently, the same reactor has been employed by Fagnoni and co-workers for the radical alkylation of α,β-unsaturated acids or aldehydes [23]. The alkyl radicals derived from isopropanol and 1,3-dioxolane were generated under solar irradiation in the presence of disodium benzophenodisulfonate (BPSS), a water-soluble benzophenone derivative, and subsequently trapped by electron-poor olefins (Scheme 4). Unfortunately, the absorption window of this photocatalyst is limited to UV-A (about 360 nm), resulting in an inefficient use of the solar spectrum. For example, 14 h of irradiation over 3 days were needed to obtain 14 g of terebic acid (89 mmol) in 75% isolated yield. This resulted in a productivity of \(32 \;{\text{mmol}}\,{\text{m}}^{{- 2}}\,{\text{h}}^{{- 1}}\). However, reaction times were comparable with those obtained with a 125 W mercury lamp. Finally, due to the optically concentrating nature of the SOLFIN reactor, it was observed that in cloudy weather conditions the reaction progress was significantly reduced.
Scheme 4Benzophenone photocatalyzed solar alkylation of electron-poor olefins performed in the SOLFIN photoreactor. A water-soluble photocatalyst is used to simplify the reaction work-up
Similarly, in the SOLFIN, another light-limited photochemical reaction was performed by Albini and co-workers [22]. In this case, a titanium dioxide slurry was used as the photocatalyst to generate benzyl radicals from the corresponding 4-methoxybenzyl(trimethyl)silane (Scheme 5). To maintain a uniform suspension of the heterogeneous catalyst, a flux of nitrogen was mixed with the reaction mixture. Maleic anhydride and maleic acid were used as radical acceptor resulting in full conversion after 10 and 22 h of irradiation, respectively, on a 20 mmol scale. For the reaction with the anhydride, the product was obtained in 65% yield after recrystallization, resulting in a productivity of \(6.5 \;{\text{mmol}}\,{\text{m}}^{{- 2}}\,{\text{h}}^{{- 1}}\). Apparent quantum yields of 1% (acid) and 3% (anhydride) were reported, thanks to the good transparency of the SOLFIN Pyrex tube to UV photons. Interesting, an apparent zero-order kinetic profile was observed, with the conversion correlating nicely with the integrated incident photon flux. Notably, given the recent advances in decarboxylative cross-coupling reactions, the succinic anhydride moieties resulting from the radical additions to maleic anhydride can be further functionalized, even in enantioselective ways [27].
Scheme 5Solar light induced carbon–carbon bond formation via radical benzylation of electron-poor olefins
SOLARIS and PROPHIS
A convincing example of how solar light can be exploited for the photochemical synthesis of fine chemicals on a large scale is constituted by the SOLARIS (solar photochemical synthesis of fine chemicals) reactor and its successor PROPHIS (parabolic trough-facility for organic photochemical syntheses), which are essentially the same device (see Fig. 6). The SOLARIS pilot experiment was jointly conducted at the Plataforma Solar de Almería (PSA) by the German Aerospace Center (DLR) and the Technical University of Aachen. In 1992, the reactor was dismantled and reassembled with some upgrades at the DLR research center of Köln-Porz (Germany). Compared to the SOLARIS, the PROPHIS was improved for what concerns the reflector material (Ag on glass vs. aluminum foil), the maximum reactor volume (from 70 to 120 l), while the total aperture (32 m2) and the geometric concentration ratio (32) both remain the same. The two reactors, therefore, share the same design. The reaction mixture is pumped through four Pyrex tubes placed in the focal point of four parabolic trough reflectors, mounted on a solar-tracking module (called Helioman). A gas-dosage inlet and a heat exchanger are also present in the recirculating loop to allow gas–liquid reaction and thermal control, respectively (see Fig. 7 for the complete flow scheme).
Because of its pilot experiment nature, the SOLARIS reactor was employed for several classical photochemical transformations, thus validating the potentiality of a solar-powered photoreactor. On the other hand, the PROPHIS has also been used for more innovative reactions.
One of the classical photochemical reactions performed in the SOLARIS was the photoisomerization of trans-stilbene reported by Jung et al. [28]. Benzil was used as sensitizer and 3.4 kg of cis-isomer were obtained in 500 min starting from 4.8 kg of starting material in 85 L of toluene (71% isolated yield, 83% conversion), close to the photostationary equilibrium (Scheme 6). The productivity, in this case, was about \(70 \;{\text{mmol}}\,{\text{m}}^{{- 2}}\,{\text{h}}^{{- 1}}\).
Scheme 6Benzil-catalyzed photoisomerization of trans-stilbene with solar light in the SOLARIS reactor
Another large-scale experiment was performed at the PROPHIS by Mattay and co-workers [29]. In this case, three of the four troughs of the PROPHIS were used with 80 L of solvents for the photoacylation of 1,4-naphthoquinone with butyraldehyde on a 500 g (3.2 mol) scale (Scheme 7). The reaction took 24 h to reach full conversion (90% GC yield) over 3 days, only the first one of which in optimal weather conditions. Since for a solar reactor based on optical concentrators like the PROPHIS the direct irradiation constitutes the most important fraction of the global solar radiation, it was calculated that over 80% of the photons reaching the reaction in the 300–400 nm range over the 3 days were collected during the first day of irradiation.
Scheme 7The photoacylation of naphthoquinone with butyraldehyde
Interestingly, in the same article, the PROPHIS reactor was compared with other two reactor designs with the same irradiated surface (3 m2): one based on smaller compound parabolic collectors, similar in design to the PROPHIS but with no solar tracking (concentrating factor ≈ 2–3) and a flat bed reactor (concentrating factor = 1, see Fig. 8 for a photograph of the three reactors). Among the three, the smaller CPC reactor exhibited the best performance thanks to its ability to concentrate both direct and a good portion of diffuse light. Notably, the ratio between the conversion in the CPC reactor and the PROPHIS (17% vs. 7%) matched the calculated ratio between the calculated amounts of photon collected by the two devices. Finally, the conversion in the flat bed was about half that in the PROPHIS (3.6% vs. 7%) partly due to the overnight solidification of the reaction mixture (containing tert-butanol), reducing the conversion in the following days.
Another reaction performed in the PROPHIS was the [2 + 2+2] cycloaddition of acetylene to benzonitrile, yielding the corresponding 2-phenylpyridine [30] (Scheme 8). Optimal results were obtained using a single trough module, presumably due to mass transfer limitation since the gas reactant is only added before the first module. Under optimized conditions, a conversion of 40.7% was achieved after 5.5 h on a 1.27 mol scale, with an isolated yield of 39.7% and the formation of just 1.3% of benzene byproduct. This corresponds to a productivity of \(11.3 \;{\text{mmol}}\,{\text{m}}^{{- 2}}\,{\text{h}}^{{- 1}}\). Previously, the same group had already performed the same reaction with sunlight, on a smaller scale, with the SOLFIN reactor [31].
Scheme 8Solar cp-Co(cod) catalyzed [2 + 2 + 2] cycloaddition of acetylene to benzonitrile
The PROPHIS reactions previously described were mostly UV-driven. Since the highest intensity of solar radiation is observed in the visible range, it is expected that performing a photochemical reaction using visible light will result in faster reaction kinetics thanks to the higher photon flux. Indeed, when the PROPHIS was applied to the photooxygenation of citronellol sensitized by rose bengal, almost 2 L of starting material per hour could be converted to the corresponding hydroperoxide by using a single reactor channel (aperture 8 m2), with an remarkable productivity of ≈ \(1.3 \;{\text{mol}}\,{\text{m}}^{{- 2}}\,{\text{h}}^{{- 1}}\) (Scheme 9) [32].
Scheme 9Single oxygen-mediated citronellol oxidation sensitized by rose bengal
MPI Line-focusing Reactor
A so-called “line focusing solar reactor” was employed between 1992 and 1997 at the Max Planck Institute (MPI) of Mülheim (Germany) for some di-π-methane rearrangements (Scheme 10) [33,34,35]. This solar reactor is an optically-concentrating design whose parabolic collector can be focused on the reaction vessel by applying vacuum to a chamber, resulting in the stretching of the aluminum film cover onto the parabolically-shaped plastic supporting frame (see Fig. 9). Due to the high concentration factor (up to 60 suns) a cooling tower was included in the design to cool the reaction.
Scheme 10The di-π-methane rearrangements performed in the line focusing solar reactor at the MPI of Mülheim
Under optimized conditions, the barrelene derivative was exposed to solar light in a micellar solution of sodium dodecyl sulfate (SDS) in water in the presence of acetophenone as the photosensitizer. The semibullvalene product was formed in 80% isolated yield after 16 h of irradiation. Not surprisingly, the high optical concentration power of this reactor afforded a significant reduction of the reaction time, compared with the 104 h required for the direct excitation of the substrate. However, the performance of this reactor design is linked to the presence of clear sky: in partially sunny or a cloudy day, low-tech flat-bed collectors have shown to be superior thanks to their ability to efficiently collect the diffuse component of solar irradiance [36, 37].
Sunflow and Similar Design
Recently, Opatz and co-workers reported a novel reactor for solar photoredox and H-atom transfer chemistry named “sunflow” [20]. Compared to the reactors previously described, the sunflow is simpler as it does not include any type of solar concentration. Furthermore, realizing the importance of a narrow residence time distribution to optimize the reaction time and prevent over-irradiation, the recirculating closed-loop design was replaced with a more efficient single-pass. The reactor is essentially constituted by a 25 m long FEP capillary (outer diameter 1.6 mm, inner diameter 1.0 mm) woven into an aviary fence (see Fig. 10). Thanks to the microflow size of the capillary used, a stable gas–liquid slug flow could be obtained, and the reactor was used in essentially the same configuration for both homogeneous and heterogeneous reactions, highlighting its versatility.
With this reactor, three different reactions were performed: (1) the benzophenone-mediated C–C coupling of 2-chlorobenzoxazoles with alcohols, ethers, and carbamates, (2) a phenanthrene catalyzed Minisci-type cross-coupling and (3) the oxidative α-cyanation of tertiary amines (see Scheme 11).
Scheme 11Reactions performed with sunflow: a 2-chlorobenzoxazole coupling, b Minisci-type coupling and c N-phenyl-tetrahydroisoquinoline cyanation
The sunflow is the first example of photoredox and H-atom transfer photoreaction performed in a microflow capillary powered by solar light. Initially, the reactor was used for the C–C coupling of 2-chloro benzazoles catalyzed by benzophenone, previously reported by the same group [40]. The reaction was significantly faster under solar irradiation than in the original batch protocol employing a 25 W UV-A lamp: full conversion was achieved in 20 min with solar irradiation versus 24 h with artificial lamps [40]. However, the little overlap between the solar spectrum and benzophenone absorption spectrum resulted in relatively slow reaction kinetics. Similarly, the UV-driven phenanthrene-catalyzed Minisci-type reaction of carboxylic acids with aromatic nitriles was performed with solar light resulting in an acceleration compared to the batch protocol employing artificial lamps but still requiring 60 min to reach full conversion [41]. Inversely, when a visible-light-absorbing photocatalyst was used in the α-cyanation of tertiary amines, full conversion was obtained between 5 and 10 min with just 1 mol % of catalyst loading. In particular, among the photocatalysts screened, the best results were obtained with rose bengal.
As observed for the PROPHIS, the absorption yield is often the main parameter dictating the reaction efficiency. While benzophenone and phenanthrene only marginally absorb in the UV-A, the strong absorption of rose bengal in the visible (\(\lambda_{ \hbox{max} } = 558\; {\text{nm}}\)) allows for faster reaction apparent kinetics with lower photocatalyst loading.
The sunflow reactor has also been applied by the same authors to the arylation of isonitriles and heteroaromatic substrates via photolysis of azosulfones [39].
A similar approach to flow solar photochemistry was reported by Kim et al. for the photo-induced benzylic bromination [42]. In this case, 5 m of FEP capillary were coiled and placed in a Dewar flask (diameter 10 cm) that serve as a reflector. On top of the Dewar, a 20 cm diameter Fresnel lens was used to concentrate solar light and direct it toward the capillary. Thanks to the good mixing behavior of the microreactor T mixer, good selectivity (up to 96% depending on the substrate) for the monobrominated species was possible. For the bromination of toluene, 90 s of sunlight irradiation were sufficient to afford an isolated yield of 80%, with a theoretical daily productivity of 44 grams (Scheme 12).
Scheme 12Benzylic mono-bromination under solar irradiation, concentrated via a Fresnel lens
Finally, a non-concentrating setup essentially constituted by a quartz microreactor operated in recirculating fashion via a peristaltic pump was reported by Basheer and co-workers for the rose bengal mediated photooxygenation of furfural. In their simple reactor, the only stratagem specifically devised for solar irradiation was placing a mirror under the reactor to increase the reactor photon efficiency.
Compound Parabolic Concentrator-based Reactors (CPC)
Compound parabolic concentrators (CPC) are essentially “round W” shaped reflectors generally used to focus solar light on a receiver tube. Since the diameter of the tube is often in the same order as magnitude of the reflector, small concentration factors are achieved by this design. Compared with the parabolic concentrators, no solar tracking is needed, making this solution simpler and more cost-efficient. However, CPC-based reactors are still characterized by some degree of optical concentration and a continuous-flow operation mode, making them superior to the flat bed design.
Oelgemöller et al. used a small parabolic trough collector for the singlet oxygen-mediated synthesis of juglone from 5-hydroxy-1,4-naphthoquinone (Scheme 13) [32]. The parabolic collectors were covered with holographic mirrors whose reflectivity was centered on 550 nm ± 140 nm matching the absorption maximum of rose bengal, the photosensitizer used in the reaction. This approach circumvents the major limitation of optically concentrating photoreactors, which is the heating of the reaction mixture caused by the optical concentration of infrared photons.
Scheme 13Solar singlet oxygen-mediated synthesis juglone from 5-hydroxy-1,4-naphthoquinone in a small-scale CPC reactor
Despite the relatively small aperture of such a reactor (0.188 m2), 6.24 mmol of the substrate were converted in 9 h and a half of solar irradiation over 2 days, resulting in a productivity of about \(3.5\; {\text{mmol}}\,{\text{m}}^{- 2}\,{\text{h}}^{ - 1}\). This value is significantly lower than the photooxygenation of citronellol performed in the PROPHIS reported in the same article, partly due to the lower reactivity of the substrate with singlet oxygen (see Fig. 11).
Luminescent solar concentrator-photomicroreactor (LSC-PM)
In 1994 Scharf and co-workers wrote that “Any industrial application must conform to the limitations imposed by the spectral distribution of the photons from the sun, the interruptions to the radiation due to the day/night rhythm, and the weather.” In this regard, the luminescent solar concentrator-photomicroreactor (LSC-PM) [18] provides an innovative solution to waive some of these requirements. While other solar photoreactors were designed to filter the solar spectrum and concentrate only the portion of radiation needed by the reaction (vide the holographic reflectors described before for some CPC reactors), the LSC-PM is the only reactor design that actively down-converts high-energy UV photons to longer wavelength, to match the reaction absorption requirements. This results in the deliberate modification of the solar spectrum to match the reaction absorption window, overcoming the limitation of the \(\eta_{\text{Abs}}\) parameter in the expression of the total photon yield. The LSC-PM designed is based on an existing solar concentration technology, the luminescent solar concentrator (LSC) concept, embedded with a continuous-flow microreactor (see Fig. 12).
Luminescent solar concentrators are glass or polymeric slabs doped with a luminophore, generally a fluorescent dye. The photons absorbed by the dye are reemitted via fluorescence and have a high probability of being trapped in the slab due to total internal reflection. The whole slab acts therefore as a light guide. When a flow reactor is integrated with this design, the photons generated in the LSC can be used to power a photochemical reaction (see Fig. 13).
The LSC-PM design, introduced by Nöel, Debije, and co-workers [18], can be manufactured with different dyes, as far as the absorption of the fluorophore matches with the spectral demands of the photochemical reaction being performed. In its first version, the LSC-PM was a 150 uL flow reactor embedded in a 5 × 5 × 0.3 cm3 polydimethylsiloxane (PDMS) slab doped with a red fluorescent dye. The wavelength of the luminescent photons generated matched the absorption of the photosensitizer used for the model reaction (methylene blue). In particular, the singlet oxygen-mediated photooxygenation of 9,10-diphenylanthracene (DPA) was chosen since its kinetic profile is light-limited (Scheme 14). Therefore, the increased photon flux received by the reaction mixture translated in a four-fold acceleration to the reaction rate. It was shown that such acceleration is due to both the wavelength down-conversion and the concentrating characteristic of the LSC device.
Scheme 14The photooxygenation of 9,10-diphenylanthracene, a reaction whose apparent kinetics is light-limited, has been used as a probe to characterize the LSC-PM light-harvesting efficiency
Once the LSC-PM design was validated with outdoor experiments, the same group developed a scaled-up version of the reactor to increase the productivity [43]. Generally, one of the advantages of flow chemistry is the straightforward scaling up by numbering up. With this regard, the most efficient approach is undoubtedly an internal numbering-up strategy, where a single pump is connected to multiple reaction channels via a distributor [44]. When this approach was adopted for the LSC-PM reactor, however, the inter-channel spacing became a crucial aspect since the lightguide has the function of harvesting the photons for the neighboring channels (see Fig. 14). After a screening of different reactor designs, an optimal spacing of 2.5 cm was chosen and reactors were manufactured and tested, resulting in a performance similar to the original design but with an improved productivity [43].
To improve the understanding on the reactor photophysics, and aid in the development of other reactors based on the LSC-PM concept, a detailed description of the photon path within the device was later reported by the same group via Monte Carlo ray-tracing simulations [45]. In this analysis, it was observed that the photon flux emitted at the device edges is proportional to that witnessed by the reaction mixture flowing in the reactor channel (see Fig. 12). Based on this key observation, Noël and co-workers rationalized that it would have been possible to acquire accurate information on the instant photon flux reaching the reaction channel by just monitoring the variation in edge emitted photons. Once the relationship between the kinetic profile and the light intensity is known, this information can then be used to compensate the variations in solar irradiance by varying the residence time in the reactor, affording a constant reaction conversion [46]. A simple reaction control system was therefore designed by the same group that updated in real-time the residence time in the reactor by modifying the pump flow rate based on the light intensity measured via a phototransistor placed at the device edge. After a calibration of the reaction system, steady conversions were obtained even in fluctuating solar irradiance conditions (see Fig. 15). This proof of concept is extremely significant as it allows addressing a long-standing issue in solar photochemistry, namely, the possibility of having a continuous process powered by a fluctuating energy input.
Outlook
From the different articles reported earlier in the chapter, it is clear how solar photochemistry is progressively adopting simpler yet more advanced and photon-efficient reactor designs (e.g., replacing active solar-tracking with holographic reflectors or LSC-based concentrators). While low density and intermittent availability are well-known limitations of solar radiation [47], technological solutions are now existing to mitigate or overcome those well-known limitations, like the reaction control module described above. These recent developments have reduced the distance for the adoption of solar photochemistry in the production of chemicals. Another potential application of solar photochemistry could be the photocatalytic lignin-depolymerization, creating a renewable approach to bio-based chemicals [48].
In the absence of subsidies directly promoting solar photochemistry, it is likely that the first industrial applications will be specialty chemicals having niche markets and high profit margins. With further development in the reactor efficiencies, it is expected that in the future the solar manufacturing of fine chemicals could be economically competitive for several fine and specialty chemicals. Nowadays, specialty chemicals are usually produced batchwise as opposed to the continuous process that characterizes most bulk chemicals. Since efficient solar photochemistry is inextricably linked with a flow operation mode, the barrier for adoption is currently significant as both a batch-to-flow and a lamp-to-solar conversion are needed. The reluctance to change of the chemical industry is well exemplified by economic evaluation of the industrial synthesis of ε-caprolactam via solar photooximation of cyclohexane, which already in 1999 had shown that the return of investment for the solar photochemical process is superior to the existing lamp-driven approach [49, 50]. Nevertheless, no solar-powered power plants that we are aware of have been commissioned or even planned so far. We hope that future research in simpler, more efficient and versatile reactor design, coupled with the growing interest toward visible-light photochemistry, can change this situation in the future and unleash the sustainable potential of solar energy for the production of chemicals.