Skip to main content

Advertisement

Log in

Fundamental Challenges for Modeling Electrochemical Energy Storage Systems at the Atomic Scale

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

There is a strong need to improve the efficiency of electrochemical energy storage, but progress is hampered by significant technological and scientific challenges. This review describes the potential contribution of atomic-scale modeling to the development of more efficient batteries, with a particular focus on first-principles electronic structure calculations. Numerical and theoretical obstacles are discussed, along with ways to overcome them, and some recent examples are presented illustrating the insights into electrochemical energy storage that can be gained from quantum chemical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

derived from Ref. [48] (courtesy of Markus Jäckle)

Fig. 4
Fig. 5

Reprinted from Ref. [60], with permission from Elsevier

Fig. 6

Reprinted with permission from Ref. [67], Copyright 2017 American Chemical Society

Fig. 7
Fig. 8

Reprinted with permission from Ref. [75], Copyright 2013 American Chemical Society

Fig. 9

Reprinted with permission from Ref. [86], Copyright 2016 American Chemical Society

Fig. 10

(courtesy of Nicolas Hörmann)

Fig. 11

(courtesy of Holger Euchner)

Similar content being viewed by others

References

  1. Schlögl R (2010) The role of chemistry in the energy challenge. ChemSusChem 3:209

    Article  CAS  PubMed  Google Scholar 

  2. Goodenough JB (2012) Rechargeable batteries: challenges old and new. J Solid State Electrochem 16:2019

    Article  CAS  Google Scholar 

  3. Goodenough JB (2013) The Li–ion rechargeable battery: a perspective. J Am Chem Soc 135:1167

    Article  CAS  PubMed  Google Scholar 

  4. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li–O\(_2\) and Li–S batteries with high energy storage. Nat Mater 11:19

    Article  CAS  Google Scholar 

  5. Yayathi S, Walker W, Doughty D, Ardebili H (2016) Energy distributions exhibited during thermal runaway of commercial lithium ion batteries used for human spaceflight applications. J Power Sources 329:197

    Article  CAS  Google Scholar 

  6. Elia GA, Marquardt K, Hoeppner K, Fantini S, Lin R, Knipping E, Peters W, Drillet JF, Passerini S, Hahn R (2016) An overview and future perspectives of aluminum batteries. Adv Mater 28:7564

    Article  CAS  PubMed  Google Scholar 

  7. Groß A (2002) The virtual chemistry lab for reactions at surfaces: is it possible? Will it be helpful? Surf Sci 500:347

    Article  Google Scholar 

  8. Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci 108:937

    Article  PubMed  Google Scholar 

  9. Groß A, Gossenberger F, Lin X, Naderian M, Sakong S, Roman T (2014) Water structures at metal electrodes studied by ab initio molecular dynamics simulations. J Electrochem Soc 161:E3015

    Article  CAS  Google Scholar 

  10. Forster-Tonigold K, Groß A (2014) Dispersion corrected rpbe studies of liquid water. J Chem Phys 141:064501

    Article  CAS  PubMed  Google Scholar 

  11. Sakong S, Forster-Tonigold K, Groß A (2016) The structure of water at a Pt(111) electrode and the potential of zero charge studied from first principles. J Chem Phys 144:194701

    Article  CAS  PubMed  Google Scholar 

  12. Islam MS, Fisher CAJ (2014) Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem Soc Rev 43:185

    Article  CAS  PubMed  Google Scholar 

  13. Franco A, Frayret C (2015) In: Menictas C, Skyllas-Kazacos M, Lim TM (eds) Advances in batteries for medium and large-scale energy storage. Woodhead Publishing series in energy. Woodhead Publishing, Cambridge, pp 509–562. https://doi.org/10.1016/B978-1-78242-013-2.00015-7

  14. Liu N, Lu Z, Zhao J, McDowell MT, Lee HW, Zhao W, Cui Y (2014) A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol 9:187192

    Google Scholar 

  15. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359

    Article  CAS  PubMed  Google Scholar 

  16. Steiger J, Richter G, Wenk M, Kramer D, Mönig R (2015) Comparison of the growth of lithium filaments and dendrites under different conditions. Electrochem Commun 50:11

    Article  CAS  Google Scholar 

  17. Groß A (2009) Theoretical surface science—a microscopic perspective, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  18. Gschwind F, Rodriguez-Garcia G, Sandbeck D, Gross A, Weil M, Fichtner M, Hörmann N (2016) Fluoride ion batteries: theoretical performance, safety, toxicity, and a combinatorial screening of new electrodes. J Fluor Chem 182:76

    Article  CAS  Google Scholar 

  19. Mathew K, Sundararaman R, Letchworth-Weaver K, Arias TA, Hennig RG (2014) Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J Chem Phys 140:084106

    Article  CAS  PubMed  Google Scholar 

  20. Sakong S, Groß A (2016) The importance of the electrochemical environment in the electro-oxidation of methanol on Pt(111). ACS Catal 6:5575

    Article  CAS  Google Scholar 

  21. Leach AR (2001) Molecular modelling: principles and applications, 2nd edn. Pearson, Harlow

    Google Scholar 

  22. Lin H, Truhlar DG (2007) QM/MM: what have we learned, where are we, and where do we go from here? Theor Chem Acc 117:185

    Article  CAS  Google Scholar 

  23. van Duin ACT, Strachan A, Stewman S, Zhang Q, Xu X, Goddard WA (2003) Reaxffsio reactive force field for silicon and silicon oxide systems. J Phys Chem A 107:3803

    Article  CAS  Google Scholar 

  24. Fogarty JC, Aktulga HM, Grama AY, van Duin ACT, Pandit SA (2010) A reactive molecular dynamics simulation of the silica–water interface. J Chem Phys 132:174704

    Article  CAS  PubMed  Google Scholar 

  25. Borodin O, Bedrov D (2014) Interfacial structure and dynamics of the lithium alkyl dicarbonate sei components in contact with the lithium battery electrolyte. J Phys Chem C 118:18362

    Article  CAS  Google Scholar 

  26. Lorenz S, Groß A, Scheffler M (2004) Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks. Chem Phys Lett 395:210

    Article  CAS  Google Scholar 

  27. Behler J (2014) Representing potential energy surfaces by high-dimensional neural network potentials. J Phys Condens Matter 26:183001

    Article  CAS  PubMed  Google Scholar 

  28. Natarajan SK, Behler J (2016) Neural network molecular dynamics simulations of solid–liquid interfaces: water at low-index copper surfaces. Phys Chem Chem Phys 18:28704

    Article  CAS  PubMed  Google Scholar 

  29. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886

    Article  CAS  Google Scholar 

  30. Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium–air battery: promise and challenges. J Phys Chem Lett 1:2193

    Article  CAS  Google Scholar 

  31. Kim WS, Yoon WY (2004) Observation of dendritic growth on Li powder anode using optical cell. Electrochim Acta 50:541

    Article  CAS  Google Scholar 

  32. Nishikawa K, Mori T, Nishida T, Fukunaka Y, Rosso M, Homma T (2010) In situ observation of dendrite growth of electrodeposited Li metal. J Electrochem Soc 157:A1212

    Article  CAS  Google Scholar 

  33. Love CT, Baturina OA, Swider-Lyons KE (2015) Observation of lithium dendrites at ambient temperature and below. ECS Electrochem Lett 4:A24

    Article  CAS  Google Scholar 

  34. Chang HJ, Ilott AJ, Trease NM, Mohammadi M, Jerschow A, Grey CP (2015) Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using \(^7\)Li MRI. J Am Chem Soc 137:15209

    Article  CAS  PubMed  Google Scholar 

  35. Williard N, He W, Hendricks C, Pecht M (2013) Lessons learned from the 787 dreamliner issue on lithium–ion battery reliability. Energies 6:4682

    Article  Google Scholar 

  36. Li Z, Huang J, Liaw BY, Metzler V, Zhang J (2014) A review of lithium deposition in lithium–ion and lithium metal secondary batteries. J Power Sources 254:168

    Article  CAS  Google Scholar 

  37. Akolkar R (2014) Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. J Power Sources 246:84

    Article  CAS  Google Scholar 

  38. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303

    Article  CAS  Google Scholar 

  39. Schechter A, Aurbach D (1999) X-ray photoelectron spectroscopy study of surface films formed on Li electrodes freshly prepared in alkyl carbonate solutions. Langmuir 15:3334

    Article  CAS  Google Scholar 

  40. Cohen YS, Cohen Y, Aurbach D (2000) Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy. J Phys Chem B 104:12282

    Article  CAS  Google Scholar 

  41. Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A (2012) A critical review of Li/air batteries. J Electrochem Soc 159:R1

    Article  CAS  Google Scholar 

  42. Mayers MZ, Kaminski JW, Miller TF (2012) Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries. J Phys Chem C 116(50):26214

    Article  CAS  Google Scholar 

  43. Zhao QS, Wang JL (2011) Reversibility of electrochemical magnesium deposition from tetrahydrofuran solutions containing pyrrolidinyl magnesium halide. Electrochim Acta 56:6530

    Article  CAS  Google Scholar 

  44. Aurbach D, Cohen Y, Moshkovich M (2001) The study of reversible magnesium deposition by in situ scanning tunneling microscopy. Electrochem Solid State Lett 4:A113

    Article  CAS  Google Scholar 

  45. Novak P, Imhof R, Haas O (1999) Magnesium insertion electrodes for rechargeable nonaqueous batteries—a competitive alternative to lithium? Electrochim Acta 45:351

    Article  CAS  Google Scholar 

  46. Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6:2265

    Article  CAS  Google Scholar 

  47. Venables JA (1987) Nucleation calculations in a pair-binding model. Phys Rev B 36:4153

    Article  CAS  Google Scholar 

  48. Jäckle M, Groß A (2014) Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J Chem Phys 141:174710

    Article  CAS  PubMed  Google Scholar 

  49. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928

    Article  CAS  Google Scholar 

  50. Feibelman PJ (1990) Diffusion path for an Al adatom on Al(001). Phys Rev Lett 65:729

    Article  CAS  PubMed  Google Scholar 

  51. Chen C, Tsong TT (1990) Displacement distribution of atomic jump direction in diffusion of Ir atoms on the Ir(001) surface. Phys Rev Lett 64:3147

    Article  CAS  PubMed  Google Scholar 

  52. Lin X, Dasgupta A, Xie F, Schimmel T, Evers F, Groß A (2014) Exchange processes in the contact formation of Pb electrodes. Electrochim Acta 140:505

    Article  CAS  Google Scholar 

  53. Galdikas A (2007) The influence of surface diffusion on surface roughness and component distribution profiles during deposition of multilayers. Comput Mater Sci 38:716

    Article  CAS  Google Scholar 

  54. Reuter K, Scheffler M (2001) Composition, structure, and stability of RuO\(_2\)(110) as a function of oxygen pressure. Phys Rev B 65:035406

    Article  CAS  Google Scholar 

  55. Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152:J23

    Article  CAS  Google Scholar 

  56. Hansen HA, Man IC, Studt F, Abild-Pedersen F, Bligaard T, Rossmeisl J (2010) Electrochemical chlorine evolution at rutile oxide (110) surfaces. Phys Chem Chem Phys 12:283

    Article  CAS  PubMed  Google Scholar 

  57. Gossenberger F, Roman T, Groß A (2015) Equilibrium coverage of halides on metal electrodes. Surf Sci 631:17

    Article  CAS  Google Scholar 

  58. Gossenberger F, Roman T, Groß A (2016) Hydrogen and halide co-adsorption on Pt(111) in an electrochemical environment: a computational perspective. Electrochim Acta 216:152

    Article  CAS  Google Scholar 

  59. Lin X, Gossenberger F, Groß A (2016) Ionic adsorbate structures on metal electrodes calculated from first-principles. Ind Eng Chem Res 55(42):11107

    Article  CAS  Google Scholar 

  60. Hörmann NG, Jäckle M, Gossenberger F, Roman T, Forster-Tonigold K, Naderian M, Sakong S, Groß A (2015) Some challenges in the first-principles modeling of structures and processes in electrochemical energy storage and transfer. J Power Sources 275:531–538

    Article  CAS  Google Scholar 

  61. Hörmann N, Groß A (2014) Stability, composition and properties of Li\(_2\)FeSiO\(_4\) surfaces studied by DFT. J Solid State Electrochem 18:1401

    Article  CAS  Google Scholar 

  62. Fleischmann S, Mancini M, Axmann P, Golla-Schindler U, Kaiser U, Wohlfahrt-Mehrens M (2016) Insights into the impact of impurities and non-stoichiometric effects on the electrochemical performance of Li\(_2\)MnSiO\(_4\). ChemSusChem 9:2982

    Article  CAS  PubMed  Google Scholar 

  63. Zhong G, Li Y, Yan P, Liu Z, Xie M, Lin H (2010) Structural, electronic, and electrochemical properties of cathode materials Li\(_2\)MSiO\(_4\) (M = Mn, Fe, and Co): density functional calculations. J Phys Chem C 114:3693

    Article  CAS  Google Scholar 

  64. Bao L, Gao W, Su Y, Wang Z, Li N, Chen S, Wu F (2013) Progression of the silicate cathode materials used in lithium ion batteries. Chin Sci Bull 78:575

    Article  CAS  Google Scholar 

  65. Ouyang CY, S̆ljivanc̆anin Z̆, Baldereschi A (2010) Transition from Mn\(^{4+}\) to Mn\(^{3+}\) induced by surface reconstruction at \(\lambda\)Mno\(_2\)(001). J Chem Phys 133:204701

    Article  CAS  PubMed  Google Scholar 

  66. Roudgar A, Groß A (2005) Water bilayer on the Pd/Au(111) overlayer system: coadsorption and electric field effects. Chem Phys Lett 409:157

    Article  CAS  Google Scholar 

  67. Tian LL, Yang J, Weng MY, Tan R, Zheng JX, Chen HB, Zhuang QC, Dai LM, Pan F (2017) Fast diffusion of O\(_2\) on nitrogen-doped graphene to enhance oxygen reduction and its application for high-rate Zn–air batteries. ACS Appl Mater Interfaces 9:7125–7130

    Article  CAS  PubMed  Google Scholar 

  68. Fattebert JL, Gygi F (2002) Density functional theory for efficient ab initio molecular dynamics simulations in solution. J Comput Chem 23:662

    Article  CAS  PubMed  Google Scholar 

  69. Andreussi O, Dabo I, Marzari N (2012) Revised self-consistent continuum solvation in electronic-structure calculations. J Chem Phys 136:064102

    Article  CAS  PubMed  Google Scholar 

  70. Sundararaman R, Schwarz K (2017) Evaluating continuum solvation models for the electrode–electrolyte interface: challenges and strategies for improvement. J Chem Phys 146:084111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sakong S, Naderian M, Mathew K, Hennig RG, Groß A (2015) Density functional theory study of the electrochemical interface between a Pt electrode and an aqueous electrolyte using an implicit solvent method. J Chem Phys 142:234107

    Article  CAS  PubMed  Google Scholar 

  72. Zhang GX (2009) Zinc as an energy carrier for energy conversion and storage. ECS Trans 16:47

    Article  CAS  Google Scholar 

  73. Qu L, Liu Y, Baek JB, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321

    Article  CAS  PubMed  Google Scholar 

  74. Gunceler D, Arias TA (2017) Towards a generalized iso-density continuum model for molecular solvents in plane-wave DFT. Model Simul Mater Sci Eng 25:015004

    Article  CAS  Google Scholar 

  75. Borodin O, Zhuang GV, Ross PN, Xu K (2013) Molecular dynamics simulations and experimental study of lithium ion transport in dilithium ethylene dicarbonate. J Phys Chem C 117:7433–7444

    Article  CAS  Google Scholar 

  76. Borodin O, Smith GD, Fan P (2006) Molecular dynamics simulations of lithium alkyl carbonates. J Phys Chem B 110:22773–22779

    Article  CAS  PubMed  Google Scholar 

  77. Groß A, Wei CM, Scheffler M (1998) Poisoning of hydrogen dissociation at Pd(100) by adsorbed sulfur studied by ab initio quantum dynamics and ab initio molecular dynamics. Surf Sci 416:L1095

    Article  Google Scholar 

  78. Habershon S, Markland TE, Manolopoulos DE (2009) Competing quantum effects in the dynamics of a flexible water model. J Chem Phys 131:024501

    Article  CAS  PubMed  Google Scholar 

  79. Fritsch S, Potestio R, Donadio D, Kremer K (2014) Nuclear quantum effects in water: a multiscale study. J Chem Theory Comput 10:816

    Article  CAS  PubMed  Google Scholar 

  80. Groß A, Scheffler M (1997) Role of zero-point effects in catalytic reactions involving hydrogen. J Vac Sci Technol A 15:1624

    Article  Google Scholar 

  81. Leung K, Budzien JL (2010) Ab initio molecular dynamics simulations of the initial stages of solid–electrolyte interphase formation on lithium ion battery graphitic anodes. Phys Chem Chem Phys 12:6583

    Article  CAS  PubMed  Google Scholar 

  82. Leung K, Tenney CM (2013) Toward first principles prediction of voltage dependences of electrolyte/electrolyte interfacial processes in lithium ion batteries. J Phys Chem C 117:24224

    Article  CAS  Google Scholar 

  83. Ushirogata K, Sodeyama K, Okuno Y, Tateyama Y (2013) Additive effect on reductive decompositin and binding of carbonate-based solvent toward solid electrolyte interphase formation in lithium–ion battery. J Am Chem Soc 135:11967

    Article  CAS  Google Scholar 

  84. Ma Y, Balbuena PB (2014) Dft study of reduction mechanisms of ethylene carbonate and fluoroethylene carbonate on Li\(^+\)-adsorbed Si clusters. J Electrochem Soc 161:E3097

    Article  CAS  Google Scholar 

  85. Spahr ME, Buqa H, Wüursig A, Goers D, Hardwick L, Novak P, Krumeich F, Dentzer J, Vix-Guterl C (2006) Surface reactivity of graphite materials and their surface passivation during the first electrochemical lithium insertion. J Power Sources 153(2):300

    Article  CAS  Google Scholar 

  86. Bozorgchenani M, Naderian M, Farkhondeh H, Schnaidt J, Uhl B, Bansmann J, Groß A, Behm RJ, Buchner F (2016) Structure formation and thermal stability of mono- and multilayers of ethylene carbonate on Cu(111): a model study of the electrode|electrolyte interface. J Phys Chem C 120:16791–16803

    Article  CAS  Google Scholar 

  87. Buchner F, Forster-Tonigold K, Uhl B, Alwast D, Wagner N, Farkhondeh H, Groß A, Behm RJ (2013) Toward the microscopic identification of anions and cations at the ionic liquid|Ag(111) interface: a combined experimental and theoretical investigation. ACS Nano 7:7773

    Article  CAS  PubMed  Google Scholar 

  88. Buchner F, Forster-Tonigold K, Bozorgchenani M, Gross A, Behm RJ (2016) Interaction of a self-assembled ionic liquid layer with graphite(0001): a combined experimental and theoretical study. J Phys Chem Lett 7:226

    Article  CAS  PubMed  Google Scholar 

  89. Tersoff J, Hamann DR (1983) Theory and application for the scanning tunneling microscope. Phys Rev Lett 50:1998

    Article  CAS  Google Scholar 

  90. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621

    Article  CAS  PubMed  Google Scholar 

  91. Kubiak P, Pfanzelt M, Geserick J, Hörmann U, Hüsing N, Kaiser U, Wohlfahrt-Mehrens M (2009) Electrochemical evaluation of rutile TiO\(_2\) nanoparticles as negative electrode for Li–ion batteries. J Power Sources 194:1099

    Article  CAS  Google Scholar 

  92. Hörmann N, Groß A (2014) Polar surface energies of iono-covalent materials: implications of a charge-transfer model tested on Li\(_2\)FeSiO\(_4\) surfaces. ChemPhysChem 15:2058

    Article  CAS  PubMed  Google Scholar 

  93. Lee J, Urban A, Li X, Su D, Hautier G, Ceder G (2014) Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343:519

    Article  CAS  Google Scholar 

  94. Henkelman G, Jónsson H (1999) A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J Chem Phys 111:7010

    Article  CAS  Google Scholar 

  95. Henkelman G, Jónsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113:9978

    Article  CAS  Google Scholar 

  96. Ren S, Chen R, Maawad E, Dolotko O, Guda AA, Shapovalov V, Wang D, Hahn H, Fichtner M (2015) Improved voltage and cycling for Li\(^+\) intercalation in high-capacity disordered oxyfluoride cathodes. Adv Sci 2:1500128

    Article  CAS  Google Scholar 

  97. Chen R, Ren S, Knapp M, Wang D, Witter R, Fichtner M, Hahn H (2015) Disordered lithium-rich oxyfluoride as a stable host for enhanced Li\(^+\) intercalation storage. Adv Energy Mater 5:1401814

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This review is based on the insights gained by working together with my excellent collaborators, among them Florian Buchner, Holger Euchner, Katrin Forster-Tonigold, Markus Jäckle and Nicolas Hörmann. I am also indebted to my colleagues Jürgen Behm, Oleg Borodin, Maximilian Fichtner, Martin Korth, Arnulf Latz and Wolfgang Schmickler for sharing their insights with me.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Groß.

Additional information

This article is part of the Topical Collection “Modeling Electrochemical Energy Storage at the Atomic Scale”, edited by Martin Korth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Groß, A. Fundamental Challenges for Modeling Electrochemical Energy Storage Systems at the Atomic Scale. Top Curr Chem (Z) 376, 17 (2018). https://doi.org/10.1007/s41061-018-0194-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-018-0194-3

Keywords

Navigation