Skip to main content

Advertisement

Log in

Green and Bio-Based Solvents

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Chemical reactions and many of the procedures of separation and purification employed in industry, research or chemistry teaching utilize solvents massively. In the last decades, with the birth of Green Chemistry, concerns about the employment of solvents and the effects on human health, as well as its environmental impacts and its dependence on non-renewable raw materials for manufacturing most of them, has drawn the attention of the scientific community. In this work, we review the concept of green solvent and the properties and characteristics to be considered green. Additionally, we discuss the different possible routes to prepare many solvents from biomass, as an alternative way to those methods currently applied in the petrochemical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Clark JH, Farmer TJ, Hunt AJ, Sherwood J (2015) Int J Mol Sci 16(8):17101. https://doi.org/10.3390/ijms160817101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kidwai M (2009) J Macromol Sci Part A Pure Appl Chem 73(1):147. https://doi.org/10.1351/pac200173010147

    Article  Google Scholar 

  3. Byrne FP, Jin S, Paggiola G, Petchey THM, Clark JH, Farmer TJ, Hunt AJ, Robert McElroy C, Sherwood J (2016) Sustain Chem Processes 4(1). https://doi.org/10.1186/s40508-016-0051-z

  4. Jessop PG (2011) Green Chem 13(6):1391. https://doi.org/10.1039/c0gc00797h

    Article  CAS  Google Scholar 

  5. Anastas P, Leitner W, Jessop P (2013) Green solvents: supercritical solvents. vol 4. ISBN: 978-3-527-32590-0

  6. Koller G, Fischer U, Hungerbhler K (2000) Ind Eng Chem Res 39(4):960. https://doi.org/10.1021/ie990669i

  7. Sheldon RA (2014) Green Chem 16(3):950. https://doi.org/10.1039/C3GC41935E

    Article  CAS  Google Scholar 

  8. Dunn PJ (2012) Chem Soc Rev 41(4):1452. https://doi.org/10.1039/c1cs15041c

    Article  CAS  PubMed  Google Scholar 

  9. Alfonsi K, Colberg J, Dunn PJ, Fevig T, Jennings S, Johnson TA, Peter Kleine H, Knight C, Nagy MA, Perry DA, Stefaniak M (2008) Green Chem 10(1):31. https://doi.org/10.1039/b711717e

    Article  CAS  Google Scholar 

  10. Jiménez-González C, Curzons AD, Constable DJC, Cunningham VL (2004) Clean Technol Environ Policy 7(1):42. https://doi.org/10.1007/s10098-004-0245-z

  11. Curzons AD, Constable DC, Cunningham VL (1999) Clean Technol Environ Policy 1(2):82. https://doi.org/10.1007/s100980050014

  12. Jiménez-González C, Curzons AD, Constable DJC, Overcash MR, Cunningham VL (2001) Clean Prod Process 3(1):35. https://doi.org/10.1007/pl00011310

    Article  Google Scholar 

  13. Prat D, Wells A, Hayler J, Sneddon H, Robert McElroy C, Abou-Shehada S, Dunn PJ (2015) Green Chem 18(1):288. https://doi.org/10.1039/C5GC01008J

    Article  Google Scholar 

  14. Henderson RK, Jiménez-González C, Constable DJC, Alston SR, Inglis GGA, Fisher G, Sherwood J, Binks SP, Curzons AD (2011) Green Chem 13(4):854. https://doi.org/10.1039/C0GC00918K

    Article  CAS  Google Scholar 

  15. ACS Green Chemistry Institute® Pharmaceutical Roundtable. Solvent Selection Guide: Version 2.0. (2011). https://www.acs.org/content/dam/acsorg/greenchemistry/industriainnovation/roundtable/acs-gci-pr-solvent-selection-guide.pdf

  16. Prat D, Pardigon O, Flemming HW, Letestu S, Ducandas V, Isnard P, Guntrum E, Senac T, Ruisseau S, Cruciani P, Hosek P (2013) Org Process Res Dev 17(12):1517. https://doi.org/10.1021/op4002565

    Article  CAS  Google Scholar 

  17. Laird T (1998) Org Process Res Dev 2(5):338. https://doi.org/10.1021/op9800358

    Article  CAS  Google Scholar 

  18. Lindström UM (2002) Chem Rev 102(8):2751

    Article  CAS  PubMed  Google Scholar 

  19. Shapiro N, Vigalok A (2008) Angew Chem Int Ed Engl 120(15):2891. https://doi.org/10.1002/ange.200705347

    Article  Google Scholar 

  20. n-Heptane [MAK Value Documentation, 1998] (2012) In: Hartwig A (ed) The MAK-collection for occupational health and safety. Wiley-VCH. https://doi.org/10.1002/3527600418.mb14282e0011

  21. U.S. Food and Drug Administration (2017) Indirect additives used in food contact substances. https://www.accessdata.fda.gov/scripts/fdcc/index.cfm?set=IndirectAdditives&id=HEPTANE

  22. European Chemicals Agency. Heptane—substance information—ECHA (2018). https://echa.europa.eu/substance-information/-/substanceinfo/100.005.058

  23. Watanabe K, Yamagiwa N, Torisawa Y (2007) Org Process Res Dev 11(2):251. https://doi.org/10.1021/op0680136

    Article  CAS  Google Scholar 

  24. Antonucci V, Coleman J, Ferry JB, Johnson N, Mathe M, Scott JP, Xu J (2011) Org Process Res Dev 15(4):939. https://doi.org/10.1021/op100303c

    Article  CAS  Google Scholar 

  25. Schäffner B, Schäffner F, Verevkin SP, Börner A (2010) Chem Rev 110(8):4554. https://doi.org/10.1021/cr900393d

    Article  CAS  PubMed  Google Scholar 

  26. Shanab K, Neudorfer C, Schirmer E, Spreitzer H (2013) Curr Org Chem 17(11):1179. https://doi.org/10.2174/1385272811317110005

    Article  CAS  Google Scholar 

  27. Shaikh AAG, Sivaram S (1996) Chem Rev 96(3):951. https://doi.org/10.1021/cr950067i

    Article  CAS  PubMed  Google Scholar 

  28. Shukla K, Srivastava VC (2017) Catal Rev 59(1):1. https://doi.org/10.1080/01614940.2016.1263088

    Article  CAS  Google Scholar 

  29. Han MS, Lee BG, Suh I, Kim HS, Ahn BS, Hong SI (2001) J Mol Catal A Chem 170(1–2):225. https://doi.org/10.1016/s1381-1169(01)00073-5

    Article  CAS  Google Scholar 

  30. Darensbourg D (1996) Coord Chem Rev 153:155. https://doi.org/10.1016/0010-8545(95)01232-x

    Article  CAS  Google Scholar 

  31. North M, Pasquale R, Young C (2010) Green Chem 12(9):1514. https://doi.org/10.1039/c0gc00065e

    Article  CAS  Google Scholar 

  32. Pyo SH, Park JH, Chang TS, Hatti-Kaul R (2017) Curr Opin Green Sustain Chem 5:61. https://doi.org/10.1016/j.cogsc.2017.03.012

    Article  Google Scholar 

  33. Keller T, Holtbruegge J, Niesbach A, Górak A (2011) Ind Eng Chem Res 50(19):11073. https://doi.org/10.1021/ie2014982

    Article  CAS  Google Scholar 

  34. Kerton F, Marriott R (2015) Alternative solvents for green chemistry. Chapter 9. Royal Society of Chemistry

  35. Webster R, Elliott V, Kevin Park B, Walker D, Hankin M, Taupin P (2009) PEGylated protein drugs: basic science and clinical applications. Springer, pp 127–146. https://doi.org/10.1007/978-3-7643-8679-5_8

  36. Jackson T, Watson J (1995) Conservator 19(1):45. https://doi.org/10.1080/01410096.1995.9995093

    Article  Google Scholar 

  37. Andersen FA, Alan Andersen F (1999) Int J Toxicol 18(2_suppl):53. https://doi.org/10.1177/109158189901800208

  38. Harris JM, Milton Harris J, Hundley NH, Shannon TG, Struck EC (1982) J Org Chem 47(24):4789. https://doi.org/10.1021/jo00145a041

    Article  CAS  Google Scholar 

  39. Balasubramanian D, Sukumar P, Chandani B (1979) Tetrahedron Lett 20(37):3543. https://doi.org/10.1016/S0040-4039(01)95457-7

    Article  Google Scholar 

  40. Neumann R, Sasson Y (1984) J Org Chem 49(7):1282. https://doi.org/10.1021/jo00181a031

    Article  CAS  Google Scholar 

  41. Chen J, Spear SK, Huddleston JG, Rogers RD (2005) Green Chem 7(2):64. https://doi.org/10.1039/b413546f

    Article  CAS  Google Scholar 

  42. Shende C, Kabir A, Townsend E, Malik A (2003) Anal Chem 75(14):3518

    Article  CAS  PubMed  Google Scholar 

  43. Kumar R, Chaudhary P, Nimesh S, Chandra R (2006) Green Chem 8(4):356. https://doi.org/10.1039/B517397C

    Article  CAS  Google Scholar 

  44. Kamal A, Reddy Rajendar DR (2005) Tetrahedron Lett 46(46):7951

  45. Vafaeezadeh M, Hashemi MM (2015) J Mol Liq 207:73. https://doi.org/10.1016/j.molliq.2015.03.003

  46. Chandrasekhar S, Narsihmulu C, Sultana SS, Ramakrishna Reddy N (2002) Org Lett 4(25):4399. https://doi.org/10.1021/ol0266976

  47. Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, Frey H (2016) Chem Rev 116(4):2170. https://doi.org/10.1021/acs.chemrev.5b00441

    Article  CAS  PubMed  Google Scholar 

  48. (2012) The MAK-Collection for Occupational Health and Safety. Wiley-VCH, pp 272–285. https://doi.org/10.1002/3527600418.mb2532269kske0010

  49. Leininger NF, Clontz R, Gainer JL, Kirwan DJ (2003) Chem Eng Commun 190(4):431. https://doi.org/10.1080/00986440302082

    Article  CAS  Google Scholar 

  50. Yilgör E, Yilgör I (2014) Prog Polym Sci 39(6):1165. https://doi.org/10.1016/j.progpolymsci.2013.11.003 (Topical issue on Polymer Chemistry)

  51. Krossing I, Slattery JM, Daguenet C, Dyson PJ, Oleinikova A, Weingärtner H (2006) J Am Chem Soc 128(41):13427. https://doi.org/10.1021/ja0619612

    Article  CAS  PubMed  Google Scholar 

  52. Ghandi K (2014) Green Sustain Chem 04(01):44. https://doi.org/10.4236/gsc.2014.41008

    Article  CAS  Google Scholar 

  53. Palumbo O, Trequattrini F, Navarra MA, Brubach JB, Roy P, Paolone A (2017) Phys Chem Chem Phys 19(12):8322. https://doi.org/10.1039/c7cp00850c

    Article  CAS  PubMed  Google Scholar 

  54. Matuszek K, Chrobok A, Coleman F, Seddon KR, Swadźba-Kwaśny M (2014) Green Chem 16(7):3463. https://doi.org/10.1039/c4gc00415a

    Article  CAS  Google Scholar 

  55. Porada JH, Zauser D, Feucht B, Stubenrauch C (2016) Soft Matter 12(30):6352. https://doi.org/10.1039/c6sm00930a

    Article  CAS  PubMed  Google Scholar 

  56. Nusaibah Masri A, Masri AN, Mi AM, Leveque JM (2016) Ind Eng Manag 05(04):1000197. https://doi.org/10.4172/2169-0316.1000197

    Article  Google Scholar 

  57. Han D, Row KH (2010) Molecules 15(4):2405. https://doi.org/10.3390/molecules15042405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Corkery RW (2008) Curr Opin Colloid Interface Sci 13(4):288. https://doi.org/10.1016/j.cocis.2008.03.001

    Article  CAS  Google Scholar 

  59. Ventura SPM, Silva FAE, Quental MV, Mondal D, Freire MG, Coutinho JAP (2017) Chem Rev 117(10):6984. https://doi.org/10.1021/acs.chemrev.6b00550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wasserscheid P (2008) Organic synthesis highlights V. Wiley-VCH, pp 105–117. https://doi.org/10.1002/9783527619986.ch11

  61. Watanabe M, Thomas ML, Zhang S, Ueno K, Yasuda T, Dokko K (2017) Chem Rev 117(10):7190. https://doi.org/10.1021/acs.chemrev.6b00504

    Article  CAS  PubMed  Google Scholar 

  62. Zhou Y, Qu J, Appl ACS (2017) Mater Interfaces 9(4):3209. https://doi.org/10.1021/acsami.6b12489

    Article  CAS  Google Scholar 

  63. Colomines G, Decaen P, Lourdin D, Leroy E (2016) RSC Adv 6(93):90331. https://doi.org/10.1039/c6ra16573g

    Article  CAS  Google Scholar 

  64. Broderick EM, Serban M, Mezza B, Bhattacharyya A (2017) ACS Sustain Chem Eng 5(5):3681. https://doi.org/10.1021/acssuschemeng.6b02953

    Article  CAS  Google Scholar 

  65. Qiu J, Zhao Y, Li Z, Wang H, Fan M, Wang J (2017) ChemSusChem 10(6):1120. https://doi.org/10.1002/cssc.201601129

    Article  CAS  PubMed  Google Scholar 

  66. Janiak C (2013) Zeitschrift für Naturforschung B 68(10):1059. https://doi.org/10.5560/znb.2013-3140

    Article  CAS  Google Scholar 

  67. Vekariya RL (2017) J Mol Liq 227:44. https://doi.org/10.1016/j.molliq.2016.11.123

    Article  CAS  Google Scholar 

  68. Durga G, Goyal D, Mishra A (2013) Green materials for sustainable water remediation and treatment. Mishra A, Clark J (eds) The Royal Society of Chemistry, pp 155–180. https://doi.org/10.1039/9781849735001-00155

  69. Freemantle M (2007) Chem Eng News 85(1):23. https://doi.org/10.1021/cen-v085n001.p023

    Article  Google Scholar 

  70. Plechkova NV, Seddon KR (2008) Chem Soc Rev 37(1):123. https://doi.org/10.1039/b006677j

    Article  CAS  PubMed  Google Scholar 

  71. Smith EL, Abbott AP, Ryder KS (2014) Chem Rev 114(21):11060. https://doi.org/10.1021/cr300162p

    Article  CAS  PubMed  Google Scholar 

  72. Mbous YP, Hayyan M, Hayyan A, Wong WF, Hashim MA, Looi CY (2017) Biotechnol Adv 35(2):105. https://doi.org/10.1016/j.biotechadv.2016.11.006

    Article  CAS  PubMed  Google Scholar 

  73. Khandelwal S, Tailor YK, Kumar M (2016) J Mol Liq 215:345. https://doi.org/10.1016/j.molliq.2015.12.015

    Article  CAS  Google Scholar 

  74. Söldner A, Zach J, Iwanow M, Gärtner T, Schlosser M, Pfitzner A, König B (2016) Chemistry 22(37):13108. https://doi.org/10.1002/chem.201602821

    Article  CAS  PubMed  Google Scholar 

  75. Karimi M, Eshraghi MJ, Jahangir V (2016) Mater Lett 171:100. https://doi.org/10.1016/j.matlet.2016.02.065

    Article  CAS  Google Scholar 

  76. Karimi M, Hesaraki S, Alizadeh M, Kazemzadeh A, Non-Cryst J (2016) Solids 443:59. https://doi.org/10.1016/j.jnoncrysol.2016.04.026

    Article  CAS  Google Scholar 

  77. Abbott AP, El Ttaib K, Frisch G, Ryder KS, Weston D (2012) Phys Chem Chem Phys 14(7):2443. https://doi.org/10.1039/c2cp23712a

    Article  CAS  PubMed  Google Scholar 

  78. Durand E, Lecomte J, Villeneuve P (2013) Eur J Lipid Sci Technol 115(4):379. https://doi.org/10.1002/ejlt.201200416

    Article  CAS  Google Scholar 

  79. Alonso DA, Baeza A, Chinchilla R, Guillena G, Pastor IM, Ramón DJ (2016) Eur J Org Chem 2016(4):612. https://doi.org/10.1002/ejoc.201501197

    Article  CAS  Google Scholar 

  80. Ge X, Gu C, Wang X, Tu J (2017) J Mater Chem A Mater Energy Sustain 5(18):8209. https://doi.org/10.1039/c7ta01659j

    Article  CAS  Google Scholar 

  81. Anastas PT, Leitner W, Jessop PG (2010) Handbook of green chemistry: supercritical solvents, vol 4. Wiley-VCH

  82. Machida H, Takesue M, Smith RL (2011) J Supercrit Fluids 60:2. https://doi.org/10.1016/j.supflu.2011.04.016

    Article  CAS  Google Scholar 

  83. da Ponte MN (2017) High pressure technologies in biomass conversion. The Royal Society of Chemistry, pp 1–8. https://doi.org/10.1039/9781782626763-00001

  84. Scott Oakes R, Clifford AA, Rayner CM (2001) J Chem Soc Perkin 1:917–941. https://doi.org/10.1039/B101219N

    Article  Google Scholar 

  85. Brunner G (2004) Supercritical fluids as solvents and reaction media. Elsevier Science

  86. Kaupp G (2008) Organic synthesis highlights III. Wiley-VCH, pp 211–221. https://doi.org/10.1002/9783527619962.ch34

  87. Cuperus FP, Boswinkel G, Muuse BG, Derksen JTP (1996) J Am Oil Chem Soc 73(12):1675. https://doi.org/10.1007/BF02517971

    Article  CAS  Google Scholar 

  88. Lorenzen J, Igl N, Tippelt M, Stege A, Qoura F, Sohling U, Brück T (2017) Bioprocess Biosyst Eng 40(6):911. https://doi.org/10.1007/s00449-017-1755-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Carrara VS, Filho LC, Garcia VAS, Faiões VS, Cunha-Júnior EF, Torres-Santos EC, Cortez DAG (2017) Evid Based Complement Alternat Med 2017:7401748. https://doi.org/10.1155/2017/7401748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nguyen K, Barton P, Spencer JS (1991) J Supercrit Fluids 4(1):40. https://doi.org/10.1016/0896-8446(91)90029-6

    Article  Google Scholar 

  91. Park K, Kim H, Kim H, Sung J, Koh M (2012) Decontamination of radioactive contaminants using liquid and supercritical CO2. INTECH Open Access Publisher

  92. Fornari T (2016) Reference module in food science. Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.03111-5

  93. DeSimone JM, Tumas W (2003) Green chemistry using liquid and supercritical carbon dioxide. Oxford University Press, Oxford

  94. Anastas P, Warner J (1998) Green chemistry: theory and practice. Oxford University Press, Oxford

  95. White J, Werpy T, Petersen G, Holladay J, Aden A, Bozell J (2004) Top value added chemicals from biomass: I. Results of Screening for potential candidates from sugars and synthesis gas. Department of Energy report (\([\)U.S. Department of Energy \([\)Office of\(]\) Energy Efficiency and Renewable Energy)

  96. Sengupta D, Pike RW (2012) Chemicals from Biomass: integrating bioprocesses into chemical production complexes for sustainable development. CRC Press

  97. Carpenter D, Westover TL, Czernik S, Jablonski W (2014) Green Chem 16(2):384. https://doi.org/10.1039/c3gc41631c

    Article  CAS  Google Scholar 

  98. Demirbas A (2008) Energy Convers Manag 49(1):125. https://doi.org/10.1016/j.enconman.2007.05.002

    Article  CAS  Google Scholar 

  99. Kayode B, Hart A (2017) Biofuels, pp. 1–19. https://doi.org/10.1080/17597269.2017.1306683

  100. Carneiro MLNM, Pradelle F, Braga SL, Gomes MSP, Martins ARFA, Turkovics F, Pradelle RNC (2017) Renew Sustain Energy Rev 73:632. https://doi.org/10.1016/j.rser.2017.01.152

    Article  CAS  Google Scholar 

  101. Wu L, Moteki T, Gokhale AA, Flaherty DW, Dean Toste F (2016) Chem. 1(1):32. https://doi.org/10.1016/j.chempr.2016.05.002

  102. Calvo-Flores J, Dobado J, Isac-García F, Martín-Martínez J (2015) Lignin and lignans as renewable raw materials: chemistry, technology and applications. Wiley

  103. Wang Z, Yuan L, Ganewatta MS, Lamm ME, Rahman MA, Wang J, Liu S, Tang C (2017) Macromol Rapid Commun 38(11):1700009. https://doi.org/10.1002/marc.201700009

    Article  CAS  Google Scholar 

  104. Singh R, Lin YT, Chuang WL, Ko FH (2017) Org Electron 44:198. https://doi.org/10.1016/j.orgel.2017.02.024

    Article  CAS  Google Scholar 

  105. Manochio C, Andrade BR, Rodriguez RP, Moraes BS (2017) Renew Sustain Energy Rev 80:743. https://doi.org/10.1016/j.rser.2017.05.063

    Article  Google Scholar 

  106. Taherzadeh MJ, Lennartsson PR, Teichert O, Nordholm H (2013) Biofuels production. Wiley-VCH, pp 211–253. https://doi.org/10.1002/9781118835913.ch8

  107. Kosaric N, Duvnjak Z, Farkas A, Sahm H, Bringer-Meyer S, Goebel O, Mayer D (2011) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, pp 1–72. https://doi.org/10.1002/14356007.a09_587.pub2

  108. Rudolf A, Karhumaa K, Hahn-Hägerdal B (2009) Yeast biotechnology: diversity and applications. SpringerPolypropylene2012272, pp 489–513. https://doi.org/10.1007/978-1-4020-8292-4_23

  109. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Bioresour Technol 101(13):4851. https://doi.org/10.1016/j.biortech.2009.11.093

    Article  CAS  PubMed  Google Scholar 

  110. Szmant HH (1989) Chapter 4: C2 building block. Wiley

  111. Hahn HD, Dämbkes G, Rupprich N, Bahl H, Frey GD (2013) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, pp 1–13. https://doi.org/10.1002/14356007.a04_463.pub3

  112. Uyttebroek M, Van Hecke W, Vanbroekhoven K (2015) Catal Today 239:7. https://doi.org/10.1016/j.cattod.2013.10.094

    Article  CAS  Google Scholar 

  113. Ndaba B, Chiyanzu I, Marx S (2015) Biotechnol Rep (Amst) 8:1. https://doi.org/10.1016/j.btre.2015.08.001

    Article  CAS  Google Scholar 

  114. Mascal M (2012) Biofuels Bioprod Biorefin 6(4):483. https://doi.org/10.1002/bbb.1328

    Article  CAS  Google Scholar 

  115. Patnaik P (2007) A comprehensive guide to the hazardous properties of chemical substances. Wiley, Hoboken

    Book  Google Scholar 

  116. Tyner T, Francis J (2017) ACS reagent chemicals. American Chemical Society, Washington, DC. https://doi.org/10.1021/acsreagents.4249

  117. Clark JH, Hunt A, Topi C, Paggiola G, Sherwood J (2017) Sustainable solvents. CHAPTER 6: an appendix of solvent data sheets. Royal Society of Chemistry

  118. Vivek N, Pandey A, Binod P (2017) Current developments in biotechnology and bioengineering. Elsevier, pp 719–738. https://doi.org/10.1016/B978-0-444-63662-1.00031-2

  119. Sun Y, Ma C, Fu H, Mu Y, Xiu Z (2014) Bioprocessing of renewable resources to commodity bioproducts. Wiley-VCH, pp 289–326. https://doi.org/10.1002/9781118845394.ch11

  120. Jiang Y, Liu W, Zou H, Cheng T, Tian N, Xian M (2014) Microb Cell Fact 13:165. https://doi.org/10.1186/s12934-014-0165-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chethan SG (2014) Bio Sci Res Bull 30(2):51. https://doi.org/10.5958/2320-3161.2014.00002.9

    Article  CAS  Google Scholar 

  122. Tan HW, Aziz ARA, Aroua MK (2013) Renew Sustain Energy Rev 27:118. https://doi.org/10.1016/j.rser.2013.06.035

    Article  CAS  Google Scholar 

  123. Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C (2007) Angew Chem Int Ed Engl 119(24):4516. https://doi.org/10.1002/ange.200604694

  124. Corma A, Iborra S, Velty A (2007) Chem Rev 107(6):2411. https://doi.org/10.1021/cr050989d

    Article  CAS  PubMed  Google Scholar 

  125. Serrano-Ruiz JC, Luque R, Sepúlveda-Escribano A (2011) Chem Soc Rev 40(11):5266. https://doi.org/10.1039/c1cs15131b

    Article  CAS  PubMed  Google Scholar 

  126. Sharninghausen LS, Campos J, Manas MG, Crabtree RH (2014) Nat Commun 5:5084. https://doi.org/10.1038/ncomms6084

    Article  CAS  PubMed  Google Scholar 

  127. Pagliaro M, Rossi M (2008) The future of glycerol: new usages for a versatile raw material. The Royal Society of Chemistry, pp 1–17. https://doi.org/10.1039/9781847558305-00001

  128. Díaz-Álvarez AE, Francos J, Croche P, Cadierno V (2014) Curr Green Chem 1(1):51. https://doi.org/10.2174/221334610101131218094907

    Article  CAS  Google Scholar 

  129. Aldea L, Fraile JM, García-Marín H, García JI, Herrerías CI, Mayoral JA, Pérez I (2010) Green Chem 12(3):435. https://doi.org/10.1039/b923137d

    Article  CAS  Google Scholar 

  130. Delample M, Villandier N, Douliez JP, Camy S, Condoret JS, Pouilloux Y, Barrault J, Jérôme F (2010) Green Chem 12(5):804. https://doi.org/10.1039/b925021b

    Article  CAS  Google Scholar 

  131. García JI, García-Marín H, Mayoral JA, Pérez P (2010) Green Chem 12(3):426. https://doi.org/10.1039/b923631g

    Article  CAS  Google Scholar 

  132. Mota CJA, da Silva CXA, Rosenbach N, Costa J, da Silva F (2010) Energy Fuels 24(4):2733. https://doi.org/10.1021/ef9015735

    Article  CAS  Google Scholar 

  133. Ozorio LP, Pianzolli R, Mota MBS, Mota CJA (2012) J Braz Chem Soc 23(5):931. https://doi.org/10.1590/s0103-50532012000500019

    Article  CAS  Google Scholar 

  134. Riemenschneider W (2000) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH. https://doi.org/10.1002/14356007.a09_565

  135. Bomgardner MM (2016) Firms claim biobased routes to ethyl acetate and glycols

  136. Capello C, Fischer U, Hungerbühler K (2007) Green Chem 9(9):927. https://doi.org/10.1039/b617536h

    Article  CAS  Google Scholar 

  137. Taygerly JP, Miller LM, Yee A, Peterson EA (2012) Green Chem 14(11):3020. https://doi.org/10.1039/c2gc36064k

    Article  CAS  Google Scholar 

  138. Pereira CSMVMT, Rodrigues AE (2011) Green Chem 13(10):2658. https://doi.org/10.1039/c1gc15523g

  139. Benninga H (1990) A history of lactic acid making: a chapter in the history of biotechnology. Springer, Netherlands

  140. Ghaffar T, Irshad M, Anwar Z, Aqil T, Zulifqar Z, Tariq A, Kamran M, Ehsan N, Mehmood S (2014) J Radiat Res Appl Sci 7(2):222. https://doi.org/10.1016/j.jrras.2014.03.002

    Article  CAS  Google Scholar 

  141. Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Energy Environ Sci 6(5):1415. https://doi.org/10.1039/c3ee00069a

    Article  CAS  Google Scholar 

  142. Paul S, Pradhan K, Das AR (2016) Curr Green Chem 3(1):111. https://doi.org/10.2174/2213346103666151203203139

    Article  CAS  Google Scholar 

  143. Yang J, Tan JN, Gu Y (2012) Green Chem 14(12):3304. https://doi.org/10.1039/C2GC36083G

    Article  CAS  Google Scholar 

  144. Datta R, Henry M (2006) J Chem Technol Biotechnol 81(7):1119. https://doi.org/10.1002/jctb.1486

    Article  CAS  Google Scholar 

  145. Clary JJ, Feron VJ, van Velthuijsen JA (1998) Regul Toxicol Pharmacol 27(2):88. https://doi.org/10.1006/rtph.1997.1175

    Article  CAS  PubMed  Google Scholar 

  146. Climent MJ, Corma A, Iborra S (2014) Green Chem 16(2):516. https://doi.org/10.1039/c3gc41492b

    Article  CAS  Google Scholar 

  147. Horváth IT, Mehdi H, Fábos V, Boda L, Mika L (2008) Green Chem 10(2):238. https://doi.org/10.1039/b712863k

    Article  CAS  Google Scholar 

  148. Pace V, Hoyos P, Castoldi L, de María PD, Alcántara AR (2012) ChemSusChem 5(8):1369. https://doi.org/10.1002/cssc.201100780

    Article  CAS  PubMed  Google Scholar 

  149. Zhang Z (2016) ChemSusChem 9(2):156. https://doi.org/10.1002/cssc.201501089

    Article  CAS  PubMed  Google Scholar 

  150. Alonso DM, Wettstein SG, Dumesic JA (2013) Green Chem 15(3):584. https://doi.org/10.1039/c3gc37065h

    Article  CAS  Google Scholar 

  151. Ismalaj E, Strappaveccia G, Ballerini E, Elisei F, Piermatti O, Gelman D, Vaccaro L (2014) ACS Sustain Chem Eng 2(10):2461. https://doi.org/10.1021/sc5004727

    Article  CAS  Google Scholar 

  152. Marosvölgyi-Haskó D, Lengyel B, Tukacs JM, Kollár L, Mika L (2016) ChemPlusChem 81(11):1224. https://doi.org/10.1002/cplu.201600389

    Article  CAS  PubMed  Google Scholar 

  153. Song J, Zhou B, Liu H, Xie C, Meng Q, Zhang Z, Han B (2016) Green Chem 18(14):3956. https://doi.org/10.1039/c6gc01455k

    Article  CAS  Google Scholar 

  154. Fegyverneki D, Orha L, Láng G, Horváth IT (2010) Tetrahedron 66(5):1078. https://doi.org/10.1016/j.tet.2009.11.013

    Article  CAS  Google Scholar 

  155. Hu X, Westerhof RJM, Wu L, Dong D, Li CZ (2015) Green Chem 17(1):219. https://doi.org/10.1039/c4gc01826e

    Article  CAS  Google Scholar 

  156. Al-Shaal MG, Dzierbinski A, Palkovits R (2014) Green Chem 16(3):1358. https://doi.org/10.1039/c3gc41803k

    Article  CAS  Google Scholar 

  157. Amenuvor G, Makhubela BCE, Darkwa J (2016) ACS Sustain Chem Eng 4(11):6010. https://doi.org/10.1021/acssuschemeng.6b01281

    Article  CAS  Google Scholar 

  158. Sherwood J, De bruyn M, Constantinou A, Moity L, McElroy CR, Farmer TJ, Duncan T, Raverty W, Hunt AJ, Clark JH (2014) Chem Commun 50(68):9650. https://doi.org/10.1039/c4cc04133j

  159. Alves A, Costa Pacheco AAC, Sherwood PJ, Zhenova A, McElroy CR, Hunt AJ, Parker HL, Farmer TJ, Constantinou A, De bruyn M, Whitwood AC, Raverty W, Clark JH (2016) ChemSusChem 9(24):3503. https://doi.org/10.1002/cssc.201600795

  160. Tundo P, Aricò F, Gauthier G, Rossi L, Rosamilia AE, Bevinakatti HS, Sievert RL, Newman CP (2010) ChemSusChem 3(5):566. https://doi.org/10.1002/cssc.201000011

    Article  CAS  PubMed  Google Scholar 

  161. Aricò F, Tundo P (2016) Beilstein J Org Chem 12:2256. https://doi.org/10.3762/bjoc.12.218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Pham TPT, Cho CW, Yun YS (2010) Water Res 44(2):352. https://doi.org/10.1016/j.watres.2009.09.030

    Article  CAS  PubMed  Google Scholar 

  163. Bubalo MC, Radošević K, Redovniković IR, Halambek J, Srček VG (2014) Ecotoxicol Environ Saf 99:1. https://doi.org/10.1016/j.ecoenv.2013.10.019

    Article  CAS  PubMed  Google Scholar 

  164. Hulsbosch J, De Vos DE, Binnemans K, Ameloot R (2016) ACS Sustai Chem Eng 4(6):2917. https://doi.org/10.1021/acssuschemeng.6b00553

    Article  CAS  Google Scholar 

  165. Handy ST, Okello M, Dickinson G, Dickenson G (2003) Org Lett 5(14):2513. https://doi.org/10.1021/ol034778b

    Article  CAS  PubMed  Google Scholar 

  166. Imperato G, König B, Chiappe C (2007) Eur J Org Chem 2007(7):1049. https://doi.org/10.1002/ejoc.200600435

    Article  CAS  Google Scholar 

  167. Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte ARC (2014) ACS Sustain Chem Eng 2(5):1063. https://doi.org/10.1021/sc500096j

    Article  CAS  Google Scholar 

  168. Zeisel SH, da Costa KA (2009) Nutr Rev 67(11):615. https://doi.org/10.1111/j.1753-4887.2009.00246.x

    Article  PubMed  Google Scholar 

  169. Florindo C, Oliveira FS, Rebelo LPN, Fernandes AM, Marrucho IM (2014) ACS Sustain Chem Eng 2(10):2416. https://doi.org/10.1021/sc500439w

    Article  CAS  Google Scholar 

  170. Florindo C, Oliveira MM, Branco LC, Marrucho IM (2017) J Mol Liq 247:441. https://doi.org/10.1016/j.molliq.2017.09.026

    Article  CAS  Google Scholar 

  171. Jiang C, Li W, Nian J, Lou W, Wang X (2017) Friction, pp 1–11. https://doi.org/10.1007/s40544-017-0170-x

  172. Faggian M, Sut S, Perissutti B, Baldan V, Grabnar I, Dall’Acqua S (2016) Molecules 21(11):1531. https://doi.org/10.3390/molecules21111531

    Article  CAS  PubMed Central  Google Scholar 

  173. Cheremisinoff NP (2003) Industrial solvents handbook, revised and expanded, 2nd edn. CRC Press, Boca Raton. https://doi.org/10.1201/9780203911334

  174. Chemat S, Tomao V, Chemat F (2012) Green solvents I. In: Inamuddin MA (ed). Springer, Dordrecht, pp 175–186. https://doi.org/10.1007/978-94-007-1712-1_5

  175. Martín-Luengo MA, Yates M, Martínez Domingo MJ, Casal B, Iglesias M, Esteban M, Ruiz-Hitzky E (2008) Appl Catal B 81(3–4):218. https://doi.org/10.1016/j.apcatb.2007.12.003

    Article  CAS  Google Scholar 

  176. Franck H, Stadelhofer J (2012) IndustrialAromatic chemistry: raw materials. processes. Products. Springer, Berlin

  177. Clark JH, Macquarrie DJ, Sherwood J (2012) Green Chem 14:90. https://doi.org/10.1039/C1GC16299C

    Article  CAS  Google Scholar 

  178. Rajagopal R (2014) Sustainable value creation in the fine and speciality chemicals industry. Wiley. https://doi.org/10.1002/9781118677919

  179. Srinivas K, Potts TM, King JW (2009) Green Chem 11:1581. https://doi.org/10.1039/B913050K

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been financed by the “Consejería de Economía y Conocimiento” of the “Junta de Andalucía” (ref. FQM-174). We also thanks F.J. Martín-Martínez for the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco G. Calvo-Flores.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvo-Flores, F.G., Monteagudo-Arrebola, M.J., Dobado, J.A. et al. Green and Bio-Based Solvents. Top Curr Chem (Z) 376, 18 (2018). https://doi.org/10.1007/s41061-018-0191-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-018-0191-6

Keywords

Navigation