Skip to main content

Advertisement

Log in

Electrochemical Synthesis of Battery Electrode Materials from Ionic Liquids

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Electrode materials as well as the electrolytes play a decisive role in batteries determining their performance, safety, and lifetime. In the last two decades, different types of batteries have evolved. A lot of work has been done on lithium ion batteries due to their technical importance in consumer electronics, however, the development of post-lithium systems has become a focus in recent years. This chapter gives an overview of various battery materials, primarily focusing on development of electrode materials in ionic liquids via electrochemical route and using ionic liquids as battery electrolyte components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced from Lahiri et al., Phys. Chem. Chem. Phys., 2016 [38] with permission from the PCCP Owner Societies

Fig. 2

Reproduced from Gasparotto et al., J. Power Sources, 2011 [52] with permission from Elsevier

Fig. 3

Reproduced from Zein El Abedin et al., Aust. J. Chem., 2012 [54] with permission from CSIRO Publishing

Fig. 4

Reproduced from Lahiri et al., Phys. Chem. Chem. Phys., 2016 [62] with permission from the PCCP Owner Societies

Fig. 5

Adapted from Gasparotto et al., Phys. Chem. Chem. Phys., 2009 [80] with permission from the PCCP Owner Societies

Fig. 6

Reproduced from Liu et al., J. Solid State Electrochem., 2014 [90] with permission from Springer Nature

Fig. 7

Similar content being viewed by others

References

  1. Flandrois S, Simon B (1999) Carbon materials for lithium-ion rechargeable batteries. Carbon 37(2):165–180. https://doi.org/10.1016/S0008-6223(98)00290-5

    Article  CAS  Google Scholar 

  2. Szczech JR, Jin S (2011) Nanostructured silicon for high-capacity lithium battery anodes. Energy Environ Sci 4(1):56–72. https://doi.org/10.1039/c0ee00281j

    Article  CAS  Google Scholar 

  3. Su X, Wu Q, Li J, Xiao X, Lott A, Lu W, Sheldon BW, Wu J (2014) Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater 4(1):1300882. https://doi.org/10.1002/aenm.201300882

    Article  CAS  Google Scholar 

  4. Ge M, Fang X, Rong J, Zhou C (2013) Review of porous silicon preparation and its application for lithium-ion battery anodes. Nanotechnology 24(42):422001

    Article  CAS  PubMed  Google Scholar 

  5. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4302. https://doi.org/10.1021/cr020731c

    Article  CAS  PubMed  Google Scholar 

  6. Lewandowski A, Åšwiderska-Mocek A (2009) Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies. J Power Sources 194(2):601–609. https://doi.org/10.1016/j.jpowsour.2009.06.089

    Article  CAS  Google Scholar 

  7. Ponrouch A, Monti D, Boschin A, Steen B, Johansson P, Palacin MR (2015) Non-aqueous electrolytes for sodium-ion batteries. J Mater Chem A 3(1):22–42. https://doi.org/10.1039/c4ta04428b

    Article  CAS  Google Scholar 

  8. Kalhoff J, Eshetu GG, Bresser D, Passerini S (2015) Safer electrolytes for lithium-ion batteries: state of the art and perspectives. Chemsuschem 8(13):2154–2175. https://doi.org/10.1002/cssc.201500284

    Article  CAS  PubMed  Google Scholar 

  9. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-Gonzalez J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5(3):5884–5901. https://doi.org/10.1039/c2ee02781j

    Article  CAS  Google Scholar 

  10. Ellis BL, Nazar LF (2012) Sodium and sodium-ion energy storage batteries. Curr Opin Solid State Mater Sci. 16(4):168–177. https://doi.org/10.1016/j.cossms.2012.04.002

    Article  CAS  Google Scholar 

  11. Eftekhari A, Jian Z, Ji X (2017) Potassium secondary batteries. ACS Appl Mater Interfaces 9(5):4404–4419. https://doi.org/10.1021/acsami.6b07989

    Article  CAS  PubMed  Google Scholar 

  12. Ponrouch A, Frontera C, Barde F, Palacin MR (2016) Towards a calcium-based rechargeable battery. Nat Mater 15(2):169–172

    Article  CAS  PubMed  Google Scholar 

  13. Rahman MA, Wang X, Wen C (2013) High energy density metal–air batteries: a review. J Electrochem Soc 160(10):A1759–A1771

    Article  CAS  Google Scholar 

  14. Lee J-S, Tai Kim S, Cao R, Choi N-S, Liu M, Lee KT, Cho J (2011) Metal–air batteries with high energy density: Li–air versus Zn–air. Adv Energy Mater 1(1):34–50. https://doi.org/10.1002/aenm.201000010

    Article  CAS  Google Scholar 

  15. Kraytsberg A, Ein-Eli Y (2011) Review on Li–air batteries—opportunities, limitations and perspective. J Power Sources 196(3):886–893. https://doi.org/10.1016/j.jpowsour.2010.09.031

    Article  CAS  Google Scholar 

  16. Wu YP, Rahm E, Holze R (2003) Carbon anode materials for lithium ion batteries. J Power Sources 114(2):228–236. https://doi.org/10.1016/S0378-7753(02)00596-7

    Article  CAS  Google Scholar 

  17. Liang B, Liu Y, Xu Y (2014) Silicon-based materials as high capacity anodes for next-generation lithium ion batteries. J Power Sources 267:469–490. https://doi.org/10.1016/j.jpowsour.2014.05.096

    Article  CAS  Google Scholar 

  18. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage. Mater Sci 276(5317):1395–1397. https://doi.org/10.1126/science.276.5317.1395

    Article  CAS  Google Scholar 

  19. Wu S, Han C, Iocozzia J, Lu M, Ge R, Xu R, Lin Z (2016) Germanium-based nanomaterials for rechargeable batteries. Angew Chem Int Ed 55(28):7898–7922. https://doi.org/10.1002/anie.201509651

    Article  CAS  Google Scholar 

  20. Hamon Y, Brousse T, Jousse F, Topart P, Buvat P, Schleich DM (2001) Aluminum negative electrode in lithium ion batteries. J Power Sources 97–98:185–187. https://doi.org/10.1016/S0378-7753(01)00616-4

    Article  Google Scholar 

  21. Chan CK, Patel RN, O’Connell MJ, Korgel BA, Cui Y (2010) Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 4(3):1443–1450. https://doi.org/10.1021/nn901409q

    Article  CAS  PubMed  Google Scholar 

  22. Kennedy T, Mullane E, Geaney H, Osiak M, O’Dwyer C, Ryan KM (2014) High-performance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network. Nano Lett 14(2):716–723. https://doi.org/10.1021/nl403979s

    Article  CAS  PubMed  Google Scholar 

  23. Eshetu GG, Armand M, Scrosati B, Passerini S (2014) Energy storage materials synthesized from ionic liquids. Angew Chem Int Ed 53(49):13342–13359. https://doi.org/10.1002/anie.201405910

    Article  CAS  Google Scholar 

  24. Cui L-F, Yang Y, Hsu C-M, Cui Y (2009) Carbon-silicon core–shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett 9(9):3370–3374. https://doi.org/10.1021/nl901670t

    Article  CAS  PubMed  Google Scholar 

  25. Yang LY, Li HZ, Liu J, Sun ZQ, Tang SS, Lei M (2015) Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries. Sci Rep 5:10908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. X-y Zhou, J-j Tang, Yang J, Xie J, L-l Ma (2013) Silicon–carbon hollow core–shell heterostructures novel anode materials for lithium ion batteries. Electrochim Acta 87:663–668. https://doi.org/10.1016/j.electacta.2012.10.008

    Article  CAS  Google Scholar 

  27. Zhang T, Fu L, Gao J, Yang L, Wu Y, Wu H (2006) Core–shell Si/C nanocomposite as anode material for lithium ion batteries. Pure Appl Chem 78(10):1889–1896. https://doi.org/10.1351/pac200678101889

    Article  CAS  Google Scholar 

  28. Ma Y, Ji G, Ding B, Lee JY (2013) N-doped carbon encapsulation of ultrafine silicon nanocrystallites for high-performance lithium ion storage. J Mater Chem A 1(43):13625–13631. https://doi.org/10.1039/c3ta13268d

    Article  CAS  Google Scholar 

  29. Zein El Abedin S, Borissenko N, Endres F (2004) Electrodeposition of nanoscale silicon in a room temperature ionic liquid. Electrochem Commun 6(5):510–514. https://doi.org/10.1016/j.elecom.2004.03.013

    Article  CAS  Google Scholar 

  30. Schmuck M, Balducci A, Rupp B, Kern W, Passerini S, Winter M (2010) Alloying of electrodeposited silicon with lithium—a principal study of applicability as anode material for lithium ion batteries. J Solid State Electrochem 14(12):2203–2207. https://doi.org/10.1007/s10008-008-0763-4

    Article  CAS  Google Scholar 

  31. Vlaic CA, Ivanov S, Peipmann R, Eisenhardt A, Himmerlich M, Krischok S, Bund A (2015) Electrochemical lithiation of thin silicon-based layers potentiostatically deposited from ionic liquid. Electrochim Acta 168:403–413. https://doi.org/10.1016/j.electacta.2015.03.216

    Article  CAS  Google Scholar 

  32. Park M-H, Cho Y, Kim K, Kim J, Liu M, Cho J (2011) Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries. Angew Chem Int Ed 50(41):9647–9650. https://doi.org/10.1002/anie.201103062

    Article  CAS  Google Scholar 

  33. Lahiri A, Willert A, Abedin SZE, Endres F (2014) A simple and fast technique to grow free-standing germanium nanotubes and core–shell structures from room temperature ionic liquids. Electrochim Acta 121:154–158. https://doi.org/10.1016/j.electacta.2013.12.084

    Article  CAS  Google Scholar 

  34. Meng X, Al-Salman R, Zhao J, Borissenko N, Li Y, Endres F (2009) Electrodeposition of 3D ordered macroporous germanium from ionic liquids: a feasible method to make photonic crystals with a high dielectric constant. Angew Chem Int Ed 48(15):2703–2707. https://doi.org/10.1002/anie.200805252

    Article  CAS  Google Scholar 

  35. Liu X, Zhao J, Hao J, Su B-L, Li Y (2013) 3D ordered macroporous germanium fabricated by electrodeposition from an ionic liquid and its lithium storage properties. J Mater Chem A 1(47):15076–15081. https://doi.org/10.1039/c3ta12923c

    Article  CAS  Google Scholar 

  36. Liu X, Hao J, Liu X, Chi C, Li N, Endres F, Zhang Y, Li Y, Zhao J (2015) Preparation of Ge nanotube arrays from an ionic liquid for lithium ion battery anodes with improved cycling stability. Chem Commun 51(11):2064–2067. https://doi.org/10.1039/c4cc08722d

    Article  CAS  Google Scholar 

  37. Hao J, Li N, Ma X, Liu X, Liu X, Li Y, Xu H, Zhao J (2015) Ionic liquid electrodeposition of germanium/carbon nanotube composite anode material for lithium ion batteries. Mater Lett 144:50–53. https://doi.org/10.1016/j.matlet.2015.01.022

    Article  CAS  Google Scholar 

  38. Lahiri A, Borisenko N, Borodin A, Olschewski M, Endres F (2016) Characterisation of the solid electrolyte interface during lithiation/delithiation of germanium in an ionic liquid. Phys Chem Chem Phys 18(7):5630–5637. https://doi.org/10.1039/c5cp06184a

    Article  CAS  PubMed  Google Scholar 

  39. Lahiri A, Schubert TJS, Iliev B, Endres F (2015) LiTFSI in 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)amide: a possible electrolyte for ionic liquid-based lithium ion batteries. Phys Chem Chem Phys 17(17):11161–11164. https://doi.org/10.1039/c5cp01337b

    Article  CAS  PubMed  Google Scholar 

  40. Lahiri A, Li G, Olschewski M, Endres F (2016) influence of polar organic solvents in an ionic liquid containing lithium bis(fluorosulfonyl)amide: effect on the cation-anion interaction, lithium ion battery performance, and solid electrolyte interphase. ACS Appl Mater Interfaces 8(49):34143–34150. https://doi.org/10.1021/acsami.6b12751

    Article  CAS  PubMed  Google Scholar 

  41. Kerner M, Plylahan N, Scheers J, Johansson P (2015) Ionic liquid-based lithium battery electrolytes: fundamental benefits of utilising both TFSI and FSI anions? Phys Chem Chem Phys 17(29):19569–19581. https://doi.org/10.1039/c5cp01891a

    Article  CAS  PubMed  Google Scholar 

  42. Xu K (2014) Electrolytes and interphases in li-ion batteries and beyond. Chem Rev 114(23):11503–11618. https://doi.org/10.1021/cr500003w

    Article  CAS  PubMed  Google Scholar 

  43. Kühnel RS, Böckenfeld N, Passerini S, Winter M, Balducci A (2011) Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries. Electrochim Acta 56(11):4092–4099. https://doi.org/10.1016/j.electacta.2011.01.116

    Article  CAS  Google Scholar 

  44. Lombardo L, Brutti S, Navarra MA, Panero S, Reale P (2013) Mixtures of ionic liquid—alkylcarbonates as electrolytes for safe lithium-ion batteries. J Power Sources 227:8–14. https://doi.org/10.1016/j.jpowsour.2012.11.017

    Article  CAS  Google Scholar 

  45. Kamali AR, Fray DJ (2011) Tin-based materials as advanced anode materials for lithium ion batteries: a review. Rev Adv Mater Sci 27:14–24

    CAS  Google Scholar 

  46. Gu C, Zhang H, Wang X, Tu J (2013) One-pot synthesis of SnO2/reduced graphene oxide nanocomposite in ionic liquid-based solution and its application for lithium ion batteries. Mater Res Bull 48(10):4112–4117. https://doi.org/10.1016/j.materresbull.2013.06.041

    Article  CAS  Google Scholar 

  47. Giridhar P, Elbasiony AM, Zein El Abedin S, Endres F (2014) A comparative study on the electrodeposition of tin from two different ionic liquids: influence of the anion on the morphology of the tin deposits. ChemElectroChem 1(9):1549–1556. https://doi.org/10.1002/celc.201402155

    Article  CAS  Google Scholar 

  48. Elbasiony AMR, Zein El Abedin S, Endres F (2014) Electrochemical synthesis of freestanding tin nanowires from ionic liquids. J Solid State Electrochem 18(4):951–957. https://doi.org/10.1007/s10008-013-2340-8

    Article  CAS  Google Scholar 

  49. Hsu C-H, Yang C-H, Wang Y-C, Chang J-K (2014) Nanostructured tin electrodeposited in ionic liquid for use as an anode for Li-ion batteries. J Mater Chem A 2(39):16547–16553. https://doi.org/10.1039/c4ta03709j

    Article  CAS  Google Scholar 

  50. Lahiri A, Pulletikurthi G, Zein El Abedin S, Endres F (2015) Electrodeposition of Ge, Sn and GexSn1−x from two different room temperature ionic liquids. J Solid State Electrochem 19(3):785–793. https://doi.org/10.1007/s10008-014-2675-9

    Article  CAS  Google Scholar 

  51. Liu Z, Elbasiony AM, Zein El Abedin S, Endres F (2015) Electrodeposition of zinc-copper and zinc-tin films and free-standing nanowire arrays from ionic liquids. ChemElectroChem 2(3):389–395. https://doi.org/10.1002/celc.201402350

    Article  CAS  Google Scholar 

  52. Gasparotto LHS, Prowald A, Borisenko N, El Abedin SZ, Garsuch A, Endres F (2011) Electrochemical synthesis of macroporous aluminium films and their behavior towards lithium deposition/stripping. J Power Sources 196(5):2879–2883. https://doi.org/10.1016/j.jpowsour.2010.10.104

    Article  CAS  Google Scholar 

  53. Zein El Abedin S, Endres F (2012) Free-standing aluminium nanowire architectures made in an ionic liquid. ChemPhysChem 13(1):250–255. https://doi.org/10.1002/cphc.201100639

    Article  CAS  PubMed  Google Scholar 

  54. Zein El Abedin S, Garsuch A, Endres F (2012) Aluminium nanowire electrodes for lithium-ion batteries. Aust J Chem 65(11):1529–1533. https://doi.org/10.1071/CH12330

    Article  CAS  Google Scholar 

  55. Kim Y, Ha K-H, Oh SM, Lee KT (2014) High-capacity anode materials for sodium-ion batteries. Chem Eur J 20(38):11980–11992. https://doi.org/10.1002/chem.201402511

    Article  CAS  PubMed  Google Scholar 

  56. Li Z, Ding J, Mitlin D (2015) Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc Chem Res 48(6):1657–1665. https://doi.org/10.1021/acs.accounts.5b00114

    Article  CAS  PubMed  Google Scholar 

  57. Kubota K, Komaba S (2015) Review-practical issues and future perspective for Na-ion batteries. J Electrochem Soc 162(14):A2538–A2550. https://doi.org/10.1149/2.0151514jes

    Article  CAS  Google Scholar 

  58. Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed 54(11):3431–3448. https://doi.org/10.1002/anie.201410376

    Article  CAS  Google Scholar 

  59. Borisenko N, Lahiri A, Endres F (2017) Electrodeposition of semiconductors from ionic liquids, second edition. In: Endres F, Abbott A, MacFarlane D (eds) Electrodeposition from ionic liquids. Wiley-VCH Verlag GmbH & Co. KGaA, pp 187–210. https://doi.org/10.1002/9783527682706.ch6

  60. Abel PR, Lin Y-M, de Souza T, Chou C-Y, Gupta A, Goodenough JB, Hwang GS, Heller A, Mullins CB (2013) Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J Phys Chem C 117(37):18885–18890. https://doi.org/10.1021/jp407322k

    Article  CAS  Google Scholar 

  61. Baggetto L, Keum JK, Browning JF, Veith GM (2013) Germanium as negative electrode material for sodium-ion batteries. Electrochem Commun 34:41–44. https://doi.org/10.1016/j.elecom.2013.05.025

    Article  CAS  Google Scholar 

  62. Lahiri A, Olschewski M, Gustus R, Borisenko N, Endres F (2016) Surface modification of battery electrodes via electroless deposition with improved performance for Na-ion batteries. Phys Chem Chem Phys 18(22):14782–14786. https://doi.org/10.1039/c6cp02364a

    Article  CAS  PubMed  Google Scholar 

  63. Nam D-H, Hong K-S, Lim S-J, Kwon H-S (2014) Electrochemical synthesis of a three-dimensional porous Sb/Cu2Sb anode for Na-ion batteries. J Power Sources 247:423–427. https://doi.org/10.1016/j.jpowsour.2013.08.095

    Article  CAS  Google Scholar 

  64. Liang L, Xu Y, Wang C, Wen L, Fang Y, Mi Y, Zhou M, Zhao H, Lei Y (2015) Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. Energy Environ Sci 8(10):2954–2962. https://doi.org/10.1039/c5ee00878f

    Article  CAS  Google Scholar 

  65. Jackson ED, Green S, Prieto AL (2015) Electrochemical performance of electrodeposited Zn4Sb3 films for sodium-ion secondary battery anodes. ACS Appl Mater Interfaces 7(14):7447–7450. https://doi.org/10.1021/am507436u

    Article  CAS  PubMed  Google Scholar 

  66. Wang C-H, Yeh Y-W, Wongittharom N, Wang Y-C, Tseng C-J, Lee S-W, Chang W-S, Chang J-K (2015) Rechargeable Na/Na0.44MnO2 cells with ionic liquid electrolytes containing various sodium solutes. J Power Sources 274:1016–1023. https://doi.org/10.1016/j.jpowsour.2014.10.143

    Article  CAS  Google Scholar 

  67. Wongittharom N, Lee T-C, Wang C-H, Wang Y-C, Chang J-K (2014) Electrochemical performance of Na/NaFePO4 sodium-ion batteries with ionic liquid electrolytes. J Mater Chem A 2(16):5655–5661. https://doi.org/10.1039/c3ta15273a

    Article  CAS  Google Scholar 

  68. Hosokawa T, Matsumoto K, Nohira T, Hagiwara R, Fukunaga A, Sakai S, Nitta K (2016) Stability of ionic liquids against sodium metal: a comparative study of 1-ethyl-3-methylimidazolium ionic liquids with bis(fluorosulfonyl)amide and bis(trifluoromethylsulfonyl)amide. J Phys Chem C 120(18):9628–9636. https://doi.org/10.1021/acs.jpcc.6b02061

    Article  CAS  Google Scholar 

  69. Kar M, Simons TJ, Forsyth M, MacFarlane DR (2014) Ionic liquid electrolytes as a platform for rechargeable metal–air batteries: a perspective. Phys Chem Chem Phys 16(35):18658–18674. https://doi.org/10.1039/c4cp02533d

    Article  CAS  PubMed  Google Scholar 

  70. Kuboki T, Okuyama T, Ohsaki T, Takami N (2005) Lithium–air batteries using hydrophobic room temperature ionic liquid electrolyte. J Power Sources 146(1–2):766–769. https://doi.org/10.1016/j.jpowsour.2005.03.082

    Article  CAS  Google Scholar 

  71. Mizuno F, Nakanishi S, Shirasawa A, Takechi K, Shiga T, Nishikoori H, Iba H (2011) Design of non-aqueous liquid electrolytes for rechargeable Li-O2 batteries. Electrochemistry 79(11):876–881. https://doi.org/10.5796/electrochemistry.79.876

    Article  CAS  Google Scholar 

  72. Nakamoto H, Suzuki Y, Shiotsuki T, Mizuno F, Higashi S, Takechi K, Asaoka T, Nishikoori H, Iba H (2013) Ether-functionalized ionic liquid electrolytes for lithium–air batteries. J Power Sources 243:19–23. https://doi.org/10.1016/j.jpowsour.2013.05.147

    Article  CAS  Google Scholar 

  73. Soavi F, Monaco S, Mastragostino M (2013) Catalyst-free porous carbon cathode and ionic liquid for high-efficiency, rechargeable Li/O2 battery. J Power Sources 224:115–119. https://doi.org/10.1016/j.jpowsour.2012.09.095

    Article  CAS  Google Scholar 

  74. Garsuch A, Badine DM, Leitner K, Gasparotto Luiz HS, Borisenko N, Endres F, Vracar M, Janek J, Oesten R (2012) Investigation of various ionic liquids and catalyst materials for lithium-oxygen batteries. Z Phys Chem 226:107–120. https://doi.org/10.1524/zpch.2011.0136

    Article  CAS  Google Scholar 

  75. Elia GA, Hassoun J, Kwak WJ, Sun YK, Scrosati B, Mueller F, Bresser D, Passerini S, Oberhumer P, Tsiouvaras N, Reiter J (2014) An advanced lithium–air battery exploiting an ionic liquid-based electrolyte. Nano Lett 14(11):6572–6577. https://doi.org/10.1021/nl5031985

    Article  CAS  PubMed  Google Scholar 

  76. Das S, Højberg J, Knudsen KB, Younesi R, Johansson P, Norby P, Vegge T (2015) Instability of ionic liquid-based electrolytes in Li-O2 batteries. J Phys Chem C 119(32):18084–18090. https://doi.org/10.1021/acs.jpcc.5b04950

    Article  CAS  Google Scholar 

  77. Aurbach D, Zinigrad E, Cohen Y, Teller H (2002) A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148(3):405–416. https://doi.org/10.1016/S0167-2738(02)00080-2

    Article  CAS  Google Scholar 

  78. Howlett PC, MacFarlane DR, Hollenkamp AF (2004) High lithium metal cycling efficiency in a room-temperature ionic liquid. Electrochem Solid State Lett 7(5):A97–A101

    Article  CAS  Google Scholar 

  79. Howlett PC, Brack N, Hollenkamp AF, Forsyth M, MacFarlane DR (2006) Characterization of the lithium surface in N-methyl-N-alkylpyrrolidinium bis(trifluoromethanesulfonyl)amide room-temperature ionic liquid electrolytes. J Electrochem Soc 153(3):A595–A606. https://doi.org/10.1149/1.2164726

    Article  CAS  Google Scholar 

  80. Gasparotto LHS, Borisenko N, Bocchi N, Zein El Abedin S, Endres F (2009) In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide. Phys Chem Chem Phys 11(47):11140–11145. https://doi.org/10.1039/b916809e

    Article  CAS  PubMed  Google Scholar 

  81. Stark JK, Ding Y, Kohl PA (2011) Dendrite-free electrodeposition and reoxidation of lithium-sodium alloy for metal-anode battery. J Electrochem Soc 158(10):A1100–A1105. https://doi.org/10.1149/1.3622348

    Article  CAS  Google Scholar 

  82. Sano H, Sakaebe H, Matsumoto H (2011) Observation of electrodeposited lithium by optical microscope in room temperature ionic liquid-based electrolyte. J Power Sources 196(16):6663–6669. https://doi.org/10.1016/j.jpowsour.2010.12.023

    Article  CAS  Google Scholar 

  83. Bhatt AI, Kao P, Best AS, Hollenkamp AF (2013) Understanding the morphological changes of lithium surfaces during cycling in electrolyte solutions of lithium salts in an ionic liquid. J Electrochem Soc 160(8):A1171–A1180. https://doi.org/10.1149/2.056308jes

    Article  CAS  Google Scholar 

  84. Vanhoutte G, Brooks NR, Schaltin S, Opperdoes B, Van Meervelt L, Locquet J-P, Vereecken PM, Fransaer J, Binnemans K (2014) Electrodeposition of lithium from lithium-containing solvate ionic liquids. J Phys Chem C 118(35):20152–20162. https://doi.org/10.1021/jp505479x

    Article  CAS  Google Scholar 

  85. Grande L, von Zamory J, Koch SL, Kalhoff J, Paillard E, Passerini S (2015) Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes. ACS Appl Mater Interfaces 7(10):5950–5958. https://doi.org/10.1021/acsami.5b00209

    Article  CAS  PubMed  Google Scholar 

  86. Xu M, Ivey DG, Xie Z, Qu W (2015) Rechargeable Zn–air batteries: progress in electrolyte development and cell configuration advancement. J Power Sources 283:358–371. https://doi.org/10.1016/j.jpowsour.2015.02.114

    Article  CAS  Google Scholar 

  87. Simons TJ, Torriero AAJ, Howlett PC, MacFarlane DR, Forsyth M (2012) High current density, efficient cycling of Zn2+ in 1-ethyl-3-methylimidazolium dicyanamide ionic liquid: the effect of Zn2+ salt and water concentration. Electrochem Commun 18:119–122. https://doi.org/10.1016/j.elecom.2012.02.034

    Article  CAS  Google Scholar 

  88. Xu M, Ivey DG, Xie Z, Qu W (2013) Electrochemical behavior of Zn/Zn(II) couples in aprotic ionic liquids based on pyrrolidinium and imidazolium cations and bis(trifluoromethanesulfonyl)imide and dicyanamide anions. Electrochim Acta 89:756–762. https://doi.org/10.1016/j.electacta.2012.11.023

    Article  CAS  Google Scholar 

  89. Liu Z, Abedin SZE, Endres F (2013) Electrodeposition of zinc films from ionic liquids and ionic liquid/water mixtures. Electrochim Acta 89:635–643. https://doi.org/10.1016/j.electacta.2012.11.077

    Article  CAS  Google Scholar 

  90. Liu Z, Borisenko N, Zein El Abedin S, Endres F (2014) In situ STM study of zinc electrodeposition on Au(111) from the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethylsulfonate. J Solid State Electrochem 18(9):2581–2587. https://doi.org/10.1007/s10008-014-2516-x

    Article  CAS  Google Scholar 

  91. Liu Z, El Abedin SZ, Endres F (2015) Raman and FTIR spectroscopic studies of 1-ethyl-3-methylimidazolium trifluoromethylsulfonate, its mixtures with water and the solvation of zinc ions. ChemPhysChem 16(5):970–977. https://doi.org/10.1002/cphc.201402831

    Article  CAS  PubMed  Google Scholar 

  92. Ghazvini MS, Pulletikurthi G, Liu Z, Prowald A, Zein El Abedin S, Endres F (2015) Electrodeposition and stripping behavior of a zinc/polystyrene composite electrode in an ionic liquid. J Solid State Electrochem 19(5):1453–1461. https://doi.org/10.1007/s10008-015-2757-3

    Article  CAS  Google Scholar 

  93. Keist JS, Orme CA, Wright PK, Evans JW (2015) An in situ AFM study of the evolution of surface roughness for zinc electrodeposition within an imidazolium-based ionic liquid electrolyte. Electrochim Acta 152:161–171. https://doi.org/10.1016/j.electacta.2014.11.091

    Article  CAS  Google Scholar 

  94. Ghazvini MS, Pulletikurthi G, Lahiri A, Endres F (2016) Electrochemical and spectroscopic studies of zinc acetate in 1-ethyl-3-methylimidazolium acetate for zinc electrodeposition. ChemElectroChem 3(4):598–604. https://doi.org/10.1002/celc.201500444

    Article  CAS  Google Scholar 

  95. Kar M, Winther-Jensen B, Armand M, Simons TJ, Winther-Jensen O, Forsyth M, MacFarlane DR (2016) Stable zinc cycling in novel alkoxy-ammonium-based ionic liquid electrolytes. Electrochim Acta 188:461–471. https://doi.org/10.1016/j.electacta.2015.12.050

    Article  CAS  Google Scholar 

  96. Liu Z, Cui T, Pulletikurthi G, Lahiri A, Carstens T, Olschewski M, Endres F (2016) Dendrite-free nanocrystalline zinc electrodeposition from an ionic liquid containing nickel triflate for rechargeable Zn-based batteries. Angew Chem Int Ed 55(8):2889–2893. https://doi.org/10.1002/anie.201509364

    Article  CAS  Google Scholar 

  97. Liu Z, Pulletikurthi G, Lahiri A, Cui T, Endres F (2016) Suppressing the dendritic growth of zinc in an ionic liquid containing cationic and anionic zinc complexes for battery applications. Dalton Trans 45(19):8089–8098. https://doi.org/10.1039/c6dt00969g

    Article  CAS  PubMed  Google Scholar 

  98. Switzer EE, Zeller R, Chen Q, Sieradzki K, Buttry DA, Friesen C (2013) Oxygen reduction reaction in ionic liquids: the addition of protic species. J Phys Chem C 117(17):8683–8690. https://doi.org/10.1021/jp400845u

    Article  CAS  Google Scholar 

  99. Pozo-Gonzalo C, Howlett PC, Hodgson JL, Madsen LA, MacFarlane DR, Forsyth M (2014) Insights into the reversible oxygen reduction reaction in a series of phosphonium-based ionic liquids. Phys Chem Chem Phys 16(45):25062–25070. https://doi.org/10.1039/c4cp04101a

    Article  CAS  PubMed  Google Scholar 

  100. Elia GA, Marquardt K, Hoeppner K, Fantini S, Lin R, Knipping E, Peters W, Drillet J-F, Passerini S, Hahn R (2016) An overview and future perspectives of aluminum batteries. Adv Mater 28(35):7564–7579. https://doi.org/10.1002/adma.201601357

    Article  CAS  PubMed  Google Scholar 

  101. Lai PK, Skyllas-Kazacos M (1988) Electrodeposition of aluminium in aluminium chloride/1-methyl-3-ethylimidazolium chloride. J Electroanal Chem 248(2):431–440. https://doi.org/10.1016/0022-0728(88)85103-9

    Article  CAS  Google Scholar 

  102. Giridhar P, Zein El Abedin S, Endres F (2012) Electrodeposition of aluminium from 1-butyl-1-methylpyrrolidinium chloride/AlCl3 and mixtures with 1-ethyl-3-methylimidazolium chloride/AlCl3. Electrochim Acta 70:210–214. https://doi.org/10.1016/j.electacta.2012.03.056

    Article  CAS  Google Scholar 

  103. Jayaprakash N, Das SK, Archer LA (2011) The rechargeable aluminum-ion battery. Chem Commun 47(47):12610–12612. https://doi.org/10.1039/c1cc15779e

    Article  CAS  Google Scholar 

  104. Reed LD, Menke E (2013) The roles of V2O5 and stainless steel in rechargeable Al-ion batteries. J Electrochem Soc 160(6):A915–A917. https://doi.org/10.1149/2.114306jes

    Article  CAS  Google Scholar 

  105. Wang H, Bai Y, Chen S, Luo X, Wu C, Wu F, Lu J, Amine K (2015) Binder-free V2O5 cathode for greener rechargeable aluminum battery. ACS Appl Mater Interfaces 7(1):80–84. https://doi.org/10.1021/am508001h

    Article  CAS  PubMed  Google Scholar 

  106. Wang W, Jiang B, Xiong W, Sun H, Lin Z, Hu L, Tu J, Hou J, Zhu H, Jiao S (2013) A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation. Sci Rep 3:3383. https://doi.org/10.1038/srep03383

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lin M-C, Gong M, Lu B, Wu Y, Wang D-Y, Guan M, Angell M, Chen C, Yang J, Hwang B-J, Dai H (2015) An ultrafast rechargeable aluminium-ion battery. Nature 520(7547):324–328

    Article  CAS  Google Scholar 

  108. Gifford PR, Palmisano JB (1988) An aluminum/chlorine rechargeable cell employing a room temperature molten salt electrolyte. J Electrochem Soc 135(3):650–654. https://doi.org/10.1149/1.2095685

    Article  CAS  Google Scholar 

  109. Zein El Abedin S, Moustafa EM, Hempelmann R, Natter H, Endres F (2006) Electrodeposition of nano- and microcrystalline aluminium in three different air and water stable ionic liquids. ChemPhysChem 7(7):1535–1543. https://doi.org/10.1002/cphc.200600095

    Article  CAS  PubMed  Google Scholar 

  110. Wang H, Gu S, Bai Y, Chen S, Wu F, Wu C (2016) High-voltage and noncorrosive ionic liquid electrolyte used in rechargeable aluminum battery. ACS Appl Mater Interfaces 8(41):27444–27448. https://doi.org/10.1021/acsami.6b10579

    Article  CAS  PubMed  Google Scholar 

  111. Rani JV, Kanakaiah V, Dadmal T, Rao MS, Bhavanarushi S (2013) Fluorinated natural graphite cathode for rechargeable ionic liquid-based aluminum-ion battery. J Electrochem Soc 160(10):A1781–A1784. https://doi.org/10.1149/2.072310jes

    Article  CAS  Google Scholar 

  112. Geng L, Lv G, Xing X, Guo J (2015) Reversible electrochemical intercalation of aluminum in Mo6S8. Chem Mater 27(14):4926–4929. https://doi.org/10.1021/acs.chemmater.5b01918

    Article  CAS  Google Scholar 

  113. Wang S, Yu Z, Tu J, Wang J, Tian D, Liu Y, Jiao SC (2016) A novel aluminum-ion battery: Al/AlCl3-[EMIm]Cl/Ni3S2@graphene. Adv Energy Mater 6(13):1600137. https://doi.org/10.1002/aenm.201600137

    Article  CAS  Google Scholar 

  114. Gelman D, Shvartsev B, Ein-Eli Y (2014) Aluminum–air battery based on an ionic liquid electrolyte. J Mater Chem A 2(47):20237–20242. https://doi.org/10.1039/c4ta04721d

    Article  CAS  Google Scholar 

  115. Revel R, Audichon T, Gonzalez S (2014) Non-aqueous aluminium–air battery based on ionic liquid electrolyte. J Power Sources 272:415–421. https://doi.org/10.1016/j.jpowsour.2014.08.056

    Article  CAS  Google Scholar 

  116. Cohn G, Ma L, Archer LA (2015) A novel non-aqueous aluminum sulfur battery. J Power Sources 283:416–422. https://doi.org/10.1016/j.jpowsour.2015.02.131

    Article  CAS  Google Scholar 

  117. Gao T, Li X, Wang X, Hu J, Han F, Fan X, Suo L, Pearse AJ, Lee SB, Rubloff GW, Gaskell KJ, Noked M, Wang C (2016) A rechargeable Al/S battery with an ionic-liquid electrolyte. Angew Chem Int Ed 55(34):9898–9901. https://doi.org/10.1002/anie.201603531

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Borisenko.

Additional information

This article is part of the Topical Collection “Ionic Liquids II”; edited by Barbara Kirchner, Eva Perlt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahiri, A., Borisenko, N. & Endres, F. Electrochemical Synthesis of Battery Electrode Materials from Ionic Liquids. Top Curr Chem (Z) 376, 9 (2018). https://doi.org/10.1007/s41061-018-0186-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-018-0186-3

Keywords

Navigation