Advertisement

Ultrasound in Combination with Ionic Liquids: Studied Applications and Perspectives

Review
Part of the following topical collections:
  1. Sonochemistry: From basic principles to innovative applications

Abstract

Ionic liquids (ILs) as reaction media, and sonochemistry (US) as activation method, represent separately unconventional approaches to reaction chemistry that, in many cases, generate improvements in yield, rate and selectivity compared to traditional chemistry, or even induce a change in the mechanisms or expected products. Recently, these two technologies have been combined in a range of different applications, demonstrating very significant and occasionally surprising synergetic effects. In this book chapter, the advantages and limitations of the IL/US combination in different chemical applications are critically reviewed in order to understand how, and in which respects, it could become an essential tool of sustainable chemistry in the future. Fundamental aspects and practical considerations of the combination are discussed to better control and demonstrate the brought synergetic effects.

Keywords

Sonochemistry Ultrasound Ionic liquids Solvents Cavitation Green chemistry 

References

  1. 1.
    Rogers RD, Seddon KR (2003) Science 302:792–793CrossRefGoogle Scholar
  2. 2.
    Rogers RD, Seddon KR (2003) Ionic liquids as green solvents: progress and prospects. American Chemical Society, Washington, D.C.CrossRefGoogle Scholar
  3. 3.
    Wasserscheid P, Welton T (2008) Ionic liquids in synthesis. Wiley-VCH, WeinheimGoogle Scholar
  4. 4.
    Hallett JP, Welton T (2011) Chem Rev 111:3508–3576CrossRefGoogle Scholar
  5. 5.
    Cojocaru OA, Bica K, Gurau G, Narita A, McCrary PD, Shamshina JL, Barber PS, Rogers RD (2013) MedChemComm 4:559–563CrossRefGoogle Scholar
  6. 6.
    Zhang P, Wu T, Han B (2014) Adv Mater 26:6810–6827CrossRefGoogle Scholar
  7. 7.
    Ho TD, Zhang C, Hantao LW, Anderson JL (2014) Anal Chem 86:262–285CrossRefGoogle Scholar
  8. 8.
    MacFarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliot GD, Davis JH Jr, Watanabe M, Simon P, Austen Angell C (2014) Energy Environ Sci 7:232–250CrossRefGoogle Scholar
  9. 9.
    Torriero AAJ (2015) Electrochemistry in Ionic Liquids, Springer International Publishing, p 738Google Scholar
  10. 10.
    Stanisz E, Werner J, Zgoła-Grześkowiak A (2014) TrAC Trends Anal Chem 61:64–66CrossRefGoogle Scholar
  11. 11.
    Tadesse H, Luque R (2011) Energy Environ Sci 4:3913–3929CrossRefGoogle Scholar
  12. 12.
    Holbrey JD, Seddon KR (1999) Clean Products and Processes. In: Matsunaga T (ed.), Vol. 1, Springer-Verlag, New York, p 223Google Scholar
  13. 13.
    Chatel G, Pereira JFB, Debbeti V, Wang H, Rogers RD (2014) Green Chem 16:2051–2083CrossRefGoogle Scholar
  14. 14.
    Stark A, Behrend P, Braun O, Müller A, Ranke J, Ondruschka B, Jastorff B (2008) Green Chem 10:1152–1161CrossRefGoogle Scholar
  15. 15.
    Chatel G, MacFarlane DR (2014) Chem Soc Rev 43:8132–8149CrossRefGoogle Scholar
  16. 16.
    Namboodiri VV, Varma RS (2002) Org Lett 4:3161–3163CrossRefGoogle Scholar
  17. 17.
    Lévêque J-M, Luche J-L, Pétrier C, Roux R, Bonrath W (2002) Green Chem 4:357–360CrossRefGoogle Scholar
  18. 18.
    Zhao S, Zhao E, Shen P, Zhao M, Sun J (2008) Ultrason Sonochem 15:955–959CrossRefGoogle Scholar
  19. 19.
    Cravotto G, Boffa L, Lévêque JM, Estager J, Draye M, Bonrath W (2007) Aust J Chem 60:946–950CrossRefGoogle Scholar
  20. 20.
    Li W, Lin Q, Ma L (2010) Ultrason Sonochem 17:752–755CrossRefGoogle Scholar
  21. 21.
    Varma RS (2006) J Chem 45B:2305–2312Google Scholar
  22. 22.
    Lévêque JM, Desset S, Suptil J, Fachinger C, Draye M, Bonrath W, Cravotto G (2006) Ultrason Sonochem 13:189–193CrossRefGoogle Scholar
  23. 23.
    Cravotto G, Gaudino EC, Boffa L, Lévêque JM, Estager J, Bonrath W (2008) Molecules 13:149–156CrossRefGoogle Scholar
  24. 24.
    Messali M, Almtiri MN, Abderrahman B, Salghi R, Aouad MR, Alshahateet SF, Ali AAS (2015) S Afr J Chem 68:219–225Google Scholar
  25. 25.
    Messali M (2014) Arabian J Chem 7:63–70CrossRefGoogle Scholar
  26. 26.
    Messali M, Asiri MAM (2013) J Mater Environ Sci 4:770–785Google Scholar
  27. 27.
    Messali M, Aouad MR, Ali AAS, Rezki N, Ben Hadda T (2015) Med Chem Res 24:1387–1395CrossRefGoogle Scholar
  28. 28.
    Messali M (2015) Molecules 20:14936–14949CrossRefGoogle Scholar
  29. 29.
    Ameta G, Kumar Pathak A, Ameta C, Ameta R, Punjabi PB (2015) J Mol Liq 211:934–937CrossRefGoogle Scholar
  30. 30.
    Zbancioc G, Mangalagiu II, Moldoveanu C (2015) Ultrason Sonochem 23:376–384CrossRefGoogle Scholar
  31. 31.
    Varma RS (2003) Expeditious synthesis of ionic liquids using ultrasound and microwave irradiation, In: Rogers R D and Seddon K R (eds.) Vol. 856, Ionic liquids as green solvents, ACS Symposium Series, American Chemical Society: Washington, Chap. 7, p 82–92Google Scholar
  32. 32.
    Varma RS (2007) Green Chem Lett Rev 1:37–45CrossRefGoogle Scholar
  33. 33.
    Lévêque JM, Estager J, Draye M, Cravotto G, Boffa L, Bonrath W (2007) Monatsh Chem 138:1103–1113CrossRefGoogle Scholar
  34. 34.
    Deetlefs M, Seddon KR (2010) Green Chem 12:17–30CrossRefGoogle Scholar
  35. 35.
    Oxley JD, Prozorov T, Suslick KS (2003) J Am Chem Soc 125:11138–11139CrossRefGoogle Scholar
  36. 36.
    Chatel G, Pflieger R, Naffrechoux E, Nikitenko SI, Suptil J, Goux-Henry C, Kardos N, Andrioletti B, Draye M (2013) ACS Sustainable Chem Eng 1:137–143Google Scholar
  37. 37.
    Deshmukh RR, Rajagopal R, Srinivasan KV (2001) Chem Commun p 1544–1545Google Scholar
  38. 38.
    Rajagopal R, Srinivasan KV (2003) Ultrason Sonochem 10:41–43CrossRefGoogle Scholar
  39. 39.
    Rajagopal R, Jarikote DV, Srinivasan KV (2002) Chem Commun p 616–617Google Scholar
  40. 40.
    Gholap AR, Venkatesan K, Daniel T, Lahoti RJ, Srinivasan KV (2004) Green Chem 6:147–150CrossRefGoogle Scholar
  41. 41.
    Gholap AR, Venkatesan K, Daniel T, Lahoti RJ, Srinivasan KV (2003) Green Chem 5:693–696CrossRefGoogle Scholar
  42. 42.
    Venkatesan K, Pujari SS, Lahoti RJ, Srinivasan KV (2008) Ultrason Sonochem 15:548–553CrossRefGoogle Scholar
  43. 43.
    Gholap AR, Venkatesan K, Pasricha R, Daniel T, Lahoti RJ, Srinivasan KV (2005) J Org Chem 70:4869–4872CrossRefGoogle Scholar
  44. 44.
    Yang HM, Hung YH, Tu CY (2014) J Taiwan Inst Chem Eng 45:1421–1427CrossRefGoogle Scholar
  45. 45.
    Hua Q, Dabin L, Chunxu L (2011) Ultrason Sonochem 18:1035–1037CrossRefGoogle Scholar
  46. 46.
    Chatel G, Goux-Henry C, Kardos N, Suptil J, Andrioletti B, Draye M (2012) Ultrason Sonochem 19:390–394CrossRefGoogle Scholar
  47. 47.
    Chatel G, Goux-Henry C, Mirabaud A, Rossi T, Kardos N, Andrioletti B, Draye M (2012) J Catal 291:127–132CrossRefGoogle Scholar
  48. 48.
    Mamaghani M, Pourranjbar M, Nia RH (2014) J Sulfur Chem 1:1–6CrossRefGoogle Scholar
  49. 49.
    Wang J, Zong Y, Fu R, Niu Y, Yue G, Quan Z, Wang X, Pan Y (2014) Ultrason Sonochem 21:29–34CrossRefGoogle Scholar
  50. 50.
    Li D, Zang H, Wu C, Yu N (2013) Ultrason Sonochem 20:1144–1148CrossRefGoogle Scholar
  51. 51.
    Suresh, Sandhu JS (2013) Org Med Chem Lett 3:2–8CrossRefGoogle Scholar
  52. 52.
    Qian H, Wang Y, Liu D (2013) Ind Eng Chem Res 52:13272–13275CrossRefGoogle Scholar
  53. 53.
    Estager J, Lévêque JM, Turgis R, Draye M (2007) Tetrahedron Lett 5:755–759CrossRefGoogle Scholar
  54. 54.
    Yinghuai Z, Bahnmueller S, Hosmane NS, Maguirey JA (2003) Chem Lett 32:730–731CrossRefGoogle Scholar
  55. 55.
    Yinghuai Z, Bahnmueller S, Chibun C, Carpenter K, Hosmane NS, Maguire JA (2003) Tetrahedron Lett 44:5473–5476CrossRefGoogle Scholar
  56. 56.
    Yinghuai Z (2004) J Phys Chem Solids 65:349–353CrossRefGoogle Scholar
  57. 57.
    Wang X, Fulvio PF, Baker GA, Veith GM, Unocic RR, Mahurin SM, Chib M, Dai S (2010) Chem Commun 46:4487–4489CrossRefGoogle Scholar
  58. 58.
    Shi JJ, Zhu JJ (2011) Electrochim Acta 56:6008–6013CrossRefGoogle Scholar
  59. 59.
    Wu Y, Hao X, Yang J, Tian F, Jiang M (2006) Mat Lett 60:2764–2766CrossRefGoogle Scholar
  60. 60.
    Behboudnia M, Habibi-Yangjeh A, Jafari-Tarzanag Y, Khodayari A (2008) J Cryst Growth 310:4544–4548CrossRefGoogle Scholar
  61. 61.
    Goharshadi EK, Ding Y, Jorabchi MN, Nancarrow P (2009) Ultrason Sonochem 16:120–123CrossRefGoogle Scholar
  62. 62.
    Barzegar M, Habibi-Yangjeh A, Behboudnia M (2009) J Phys Chem Solids 70:1353–1358CrossRefGoogle Scholar
  63. 63.
    Salinas-Estevané P, Sanchez EM (2010) Mater Lett 64:2627–2630CrossRefGoogle Scholar
  64. 64.
    Salinas-Estevané P, Sanchez EM (2010) Cryst Growth Des 10:3917–3924CrossRefGoogle Scholar
  65. 65.
    Garcia-Gomez NA, De la Parra-Arcieniega SM, Garza-Tovar LL, Torres-Gonzalez LC, Sanchez EM (2014) J Alloys Compd 588:638–643CrossRefGoogle Scholar
  66. 66.
    Taghvaei V, Habibi-Yangjeh A, Behboudnia M (2009) Powder Technol 195:63–67CrossRefGoogle Scholar
  67. 67.
    Behboudnia M, Habibi-Yangjeh A, Jafari-Tarzanag Y, Khodayari A (2009) J Optoelectron Adv Mater 11:134–139Google Scholar
  68. 68.
    Behboudnia M, Habibi-Yangjeh A, Jafari-Tarzanag Y, Khodayari A (2008) Bull Korean Chem Soc 29:53–56Google Scholar
  69. 69.
    Behboudnia M, Habibi-Yangjeh A, Jafari-Tarzanag Y, Khodayari A (2010) J Phys Chem Solids 71:1393–1397CrossRefGoogle Scholar
  70. 70.
    Alammar T, Birkner A, Shekhah O, Mudring AV (2010) Mater Chem Phys 120:109–113CrossRefGoogle Scholar
  71. 71.
    Sang Shin U, Hong HK, Kim HW, Gong MS (2011) Bull Korean Chem Soc 32:1583–1586CrossRefGoogle Scholar
  72. 72.
    Zhang S, Zhang Y, Wang Y, Liu S, Deng Y (2012) Phys Chem Chem Phys 14:5132–5138CrossRefGoogle Scholar
  73. 73.
    McCrary PD, Beasley PA, Cojocaru OA, Schneider S, Hawkins TW, Perez JPL, McMahon BW, Pfeil M, Boatz JA, Anderson SL, Son SF, Rogers RD (2012) Chem Commun 48:4311–4313CrossRefGoogle Scholar
  74. 74.
    Qian H, Ye ZW, Lv CX (2007) Lett Org Chem 4:482–485CrossRefGoogle Scholar
  75. 75.
    Putz AM, Len A, Ianăşi C, Savii C, Almásy L (2016) Korean J Chem Eng 33:749–754CrossRefGoogle Scholar
  76. 76.
    Yang C, Li F, Li T (2015) CrystEngComm 17:7676–7683CrossRefGoogle Scholar
  77. 77.
    Zhu CZ, Guo SJ, Zhai ZY, Dong SJ (2010) Langmuir 26:7614–7618CrossRefGoogle Scholar
  78. 78.
    Nalajala VS, Moholkar VS (2011) Ultrason Sonochem 18:345–355CrossRefGoogle Scholar
  79. 79.
    Xiao W, Sun Z, Chen S, Zhang H, Zhao Y, Huang C, Liu Z (2012) RSC Adv 2:8189–8193CrossRefGoogle Scholar
  80. 80.
    Mao BH, Liu CH, Gao X, Chang R, Liu Z, Wang SD (2013) Appl Surf Sci 283:1076–1079CrossRefGoogle Scholar
  81. 81.
    Luska KL, Moores A (2012) Green Chem 14:1736–1742CrossRefGoogle Scholar
  82. 82.
    Luska KL, Moores A (2012) ChemCatChem 4:1534–1546CrossRefGoogle Scholar
  83. 83.
    Luska KL, Moores A (2011) Adv Synth Catal 353:3167–3177CrossRefGoogle Scholar
  84. 84.
    Wittmar A, Ruiz-Abad D, Ulbricht M (2012) J Nanopart Res 14:651–661CrossRefGoogle Scholar
  85. 85.
    Shafi KVPM, Ulman A, Dyal A, Yan X, Yang NL, Estournès C, Fournès L, Wattiaux A, White H, Rafailovich M (2002) Chem Mater 14:1778–1787CrossRefGoogle Scholar
  86. 86.
    Bazureau JP, Draye M (2011) Ultrasound and Microwaves: Recent Advances in Organic Chemistry, Research SignpostGoogle Scholar
  87. 87.
    Suslick KS, Hammerton DA, Cline DE (1986) J Am Chem Soc 108:5641–5645CrossRefGoogle Scholar
  88. 88.
    Jin Y, Wang P, Yin D, Liu J, Qin L, Yu N, Xie G, Li B (2007) Colloids Surf A 302:366–370CrossRefGoogle Scholar
  89. 89.
    Kim KS, Demberelnyamba D, Lee H (2004) Langmuir 20:556–560CrossRefGoogle Scholar
  90. 90.
    Yang C, Li F, Li T (2015) CrystEngComm 17:7676–7683CrossRefGoogle Scholar
  91. 91.
    Poole CF, Poole SK (2010) J Chromatogr A 1217:2268–2286CrossRefGoogle Scholar
  92. 92.
    Huddleston JG, Willauer HD, Swatloski RP, Visser AE, Rogers RD (1998) Chem Commun p 1765–1766Google Scholar
  93. 93.
    Sun X, Luo H, Dai S (2012) Chem Rev 112:2100–2128CrossRefGoogle Scholar
  94. 94.
    Tan ZJ, Wang CY, Yang ZZ, Yi YJ, Wang HY, Zhou WL, Li FF (2015) Molecules 20:17929–17943CrossRefGoogle Scholar
  95. 95.
    Liao J, Qu B, Liu D, Zheng N (2015) Ultrason Sonochem 27:110–116CrossRefGoogle Scholar
  96. 96.
    Li C, Fu X, Huang Q, Luo F, You L (2015) Eur Food Res Technol 240:49–60CrossRefGoogle Scholar
  97. 97.
    Cao X, Ye X, Lu Y, Yu Y, Mo W (2009) Anal Chim Acta 640:47–51CrossRefGoogle Scholar
  98. 98.
    Zhou Q, Zhang X, Xiao J (2009) J Chromatogr A 1216:4361–4365CrossRefGoogle Scholar
  99. 99.
    Abolhasani J, Amjadi M, Hassanzadeh J, Ghorbani-Kalhor E (2014) Anal Lett 47:1528–1540CrossRefGoogle Scholar
  100. 100.
    He SW, Shen CY, Wei XQ, Jin MC, Cai MQ (2013) Adv Mater Res 726–731:74–80CrossRefGoogle Scholar
  101. 101.
    Shamsipur M, Yazdanfar N, Ghambarian M (2016) Food Chem 204:289–297CrossRefGoogle Scholar
  102. 102.
    Han D, Row KH (2011) J Sci Food Agric 91:2888–2892CrossRefGoogle Scholar
  103. 103.
    Wu K, Zhang Q, Liu Q, Tang F, Long Y, Yao S (2009) J Sep Sci 32:4220–4226CrossRefGoogle Scholar
  104. 104.
    Dong S, Hu Q, Yang Z, Liu R, Huang G, Huang T (2013) Microchem J 110:221–226CrossRefGoogle Scholar
  105. 105.
    Gong A, Zhu X (2015) Talanta 131:603–608CrossRefGoogle Scholar
  106. 106.
    Qin H, Zhou G, Peng G, Li J, Chen J (2015) Food Anal Methods 8:1673–1681CrossRefGoogle Scholar
  107. 107.
    Sun Y, Li W, Wang J (2008) J Chromatogr B 879:975–980CrossRefGoogle Scholar
  108. 108.
    Molaakbari E, Mostafavi A, Afzali D (2011) J Hazard Mater 185:647–652CrossRefGoogle Scholar
  109. 109.
    Stanisz E, Werner J, Matusiewicz H (2013) Microchem J 110:28–35CrossRefGoogle Scholar
  110. 110.
    Tuzen M, Pekiner OZ (2015) Food Chem 188:619–624CrossRefGoogle Scholar
  111. 111.
    Parrilla Vazquez MM, Parrilla Vazquez P, Martinez Galera M, Garcia MDG, Ucles A (2013) J Chromatograph A 1291:19–21CrossRefGoogle Scholar
  112. 112.
    Asensio-Ramos M, Hernandez-Borges J, Borges-Miquel TM, Rodriguez-Delgado MA (2011) J Chromatogr A 1218:4808–4816CrossRefGoogle Scholar
  113. 113.
    Villagran C, Banks CE, Pitner WR, Hardacre C, Compton RG (2005) Ultrason Sonochem 12:423–428CrossRefGoogle Scholar
  114. 114.
    Fuchigami T, Sunaga T, Ishii H, Atobe M (2002) In: Workentin M S, Maran F and Chiba K (eds.) Organic Electrochemistry, The electrochemical society: PenningtonGoogle Scholar
  115. 115.
    Fuchigami T, Tajima T (2005) J Fluorine Chem 126:181–187CrossRefGoogle Scholar
  116. 116.
    Feroci M, Orsini M, Inesi A (2009) Adv Synth Catal 35:2067–2070CrossRefGoogle Scholar
  117. 117.
    Costa C, Doche ML, Hihn JY, Bisel I, Moisy P, Lévêque JM (2010) Ultrasonics 50:323–328CrossRefGoogle Scholar
  118. 118.
    Compton RG, Hardcastle JL, Del Campo J (2003) In: Encyclopedia of electrochemistry (Ed. Bard Stratmann), Instrumentation and Electroanalytical Chemistry (Ed. P. Unwin), Vol. 3, Wiley-VCH, WeinheimGoogle Scholar
  119. 119.
    Xiao F, Mo Z, Zhao F, Zeng B (2008) Electrochem Commun 1:1740–1743CrossRefGoogle Scholar
  120. 120.
    Xiao F, Zhao F, Mei D, Mo Z, Zeng B (2009) Biosens Bioelectron 24:3481–3486CrossRefGoogle Scholar
  121. 121.
    Xiao F, Zhao F, Zhang Y, Guo G, Zeng B (2009) J Phys Chem C 113:849–855CrossRefGoogle Scholar
  122. 122.
    Zhao F, Xiao F, Zeng B (2010) Electrochem Commun 12:168–171CrossRefGoogle Scholar
  123. 123.
    He Y, Zheng J, Dong S (2012) Analyst 2012(137):4841–4848CrossRefGoogle Scholar
  124. 124.
    He Y, Zheng J (2013) Anal Methods 5:767–772CrossRefGoogle Scholar
  125. 125.
    Chatel G, De Oliveira Vigier K, Jérôme F (2014) ChemSusChem 7:2774–2787CrossRefGoogle Scholar
  126. 126.
    Sun N, Rodriguez H, Rahman M, Rogers RD (2011) Chem Commun 47:1405–1421CrossRefGoogle Scholar
  127. 127.
    Garcia A, Gonzalez Alriols M, Llano-Ponte R, Labidi J (2011) Bioresour Technol 102:6326–6330CrossRefGoogle Scholar
  128. 128.
    Gogate PR, Abhijeet MK, Kabadi M (2009) Biochem Eng J 44:60–72CrossRefGoogle Scholar
  129. 129.
    Rokhina EV, Lens P, Virkutyte J (2009) Trends Biotechnol 5:298–306CrossRefGoogle Scholar
  130. 130.
    Mikkola JP, Kirilin A, Tuuf JC, Pranovich A, Holmbom B, Kustov LM, Murzin DY, Salmi T (2007) Green Chem 9:1229–1237CrossRefGoogle Scholar
  131. 131.
    Sun N, Rahman M, Qin Y, Maxim ML, Rodriguez H, Rogers RD (2009) Green Chem 11:646–655CrossRefGoogle Scholar
  132. 132.
    Maxim ML, Sun N, Wang H, Sterner JR, Haque A, Rogers RD (2012) Nanomater Energy 1:225–236CrossRefGoogle Scholar
  133. 133.
    Cheng F, Wang H, Chatel G, Gurau G, Rogers RD (2014) Bioresour Technol 164:394–401CrossRefGoogle Scholar
  134. 134.
    Ninomiya K, Kohori A, Tatsumi M, Osawa K, Endo T, Kakuchi R, Ogino C, Shimizu N, Takahashi K (2015) Bioresour Technol 176:169–174CrossRefGoogle Scholar
  135. 135.
    Lan W, Liu C, Yue FX, Sun RC, Kennedy JF (2011) Carbohydr Polym 86:672–677CrossRefGoogle Scholar
  136. 136.
    Liu L, Ju M, Li W, Hou Q (2013) Carbohydr Polym 98:412–420CrossRefGoogle Scholar
  137. 137.
    Yang F, Li L, Li Q, Tan W, Liu W, Xian M (2010) Carbohydr Polym 81:311–316CrossRefGoogle Scholar
  138. 138.
    Ho Ha S, Hiep NM, Koo YM (2010) Biotechnol Bioprocess Eng 15:126–130CrossRefGoogle Scholar
  139. 139.
    Liu Z, Lu L (2011) Adv Mater Res 236–238:169–172Google Scholar
  140. 140.
    Lozano P, Bernal B, Recio I, Belleville MP (2012) Green Chem 14:2631–2637CrossRefGoogle Scholar
  141. 141.
    Wang Y, Pan Y, Zhang Z, Sun R, Fang X, Yu D (2012) Process Biochem 47:976–982CrossRefGoogle Scholar
  142. 142.
    Ninomiya K, Kamide K, Takahashi K, Shimizu N (2012) Bioresour Technol 103:259–265CrossRefGoogle Scholar
  143. 143.
    Wang F, Chen ZG, Zhu HJ (2013) Biochem Eng J 79:25–28CrossRefGoogle Scholar
  144. 144.
    Ninomiya K, Ohta A, Omote S, Ogino C, Takahashi K, Shimizu N (2013) Chem Eng J 215–216:811–818CrossRefGoogle Scholar
  145. 145.
    Wang Y, Pan Y, Zhang Z, Sun R, Fang X, Yu D (2012) Process Biochem 47:976–982CrossRefGoogle Scholar
  146. 146.
    Hernoux-Villière A, Lévêque JM, Kärkkäinen J, Papaiconomou N, Lajunen M, Lassi U (2014) Catal Today 223:11–17CrossRefGoogle Scholar
  147. 147.
    Guo W, Li H, Ji G, Zhang G (2012) Bioresour Technol 125:332–334CrossRefGoogle Scholar
  148. 148.
    Bi YG, Wu SS (2013) Adv Mat Res 791–793:196–199CrossRefGoogle Scholar
  149. 149.
    Flannigan DJ, Hopkins SD, Suslick KS (2005) J Organomet Chem 690:3513–3517CrossRefGoogle Scholar
  150. 150.
    Suslick KS, Hammerton DA, Cline RE (1986) J Am Chem Soc 108:5641–5642CrossRefGoogle Scholar
  151. 151.
    Kanthale PM, Brotchie A, Grieser F, Ashokkumar M (2013) Ultrason Sonochem 20:47–51CrossRefGoogle Scholar
  152. 152.
    Chatel G, Leclerc L, Naffrechoux E, Bas C, Kardos N, Goux-Henry C, Andrioletti B, Draye M (2012) J Chem Eng Data 57:3385–3390CrossRefGoogle Scholar
  153. 153.
    Paulechka YU (2010) J Phys Chem Ref Data 39:033108CrossRefGoogle Scholar
  154. 154.
    Rocha MAA, Coutinho JAP, Santos LMNBF (2014) J Chem Phys 141:134502Google Scholar
  155. 155.
    Stepnowski P, Zaleska A (2005) J Photochem Photobiol A 170:45–50CrossRefGoogle Scholar
  156. 156.
    Jastorff B, Störmann R, Ranke J, Mölter M, Stock F, Oberheitmann B, Hoffman W, Hoffmann J, Nüchter M, Ondruschka B, Filser J (2003) Green Chem 5:136–142CrossRefGoogle Scholar
  157. 157.
    Bubalo MC, Radosevic K, Redovnikovic IR, Halambek J, Srcek VG (2014) Ecotoxicol Environ Saf 99:1–12CrossRefGoogle Scholar
  158. 158.
    Li X, Zhao J, Li Q, Wang L, Tsang SC (2007) Dalton Trans 1875–1880Google Scholar
  159. 159.
    Zhou H, Shen Y, Lv P, Wang J, Fan J (2013) Sep Purif Technol 104:208–213CrossRefGoogle Scholar
  160. 160.
    Zhou H, Lv P, Shen Y, Wang J, Fan J (2013) Water Res 47:3514–3522CrossRefGoogle Scholar
  161. 161.
    Lee SH, Nguyen HM, Koo YM, Koo SH, Ha SH (2008) Process Biochem 43:1009–1012CrossRefGoogle Scholar
  162. 162.
    Wang J, Wang S, Li Z, Gua S, Wu X, Wu F (2015) J Mol Catal B Enzym 111:21–28CrossRefGoogle Scholar
  163. 163.
    Li C, Lu Z, Zhao C, Yang L, Fu Y, Shi K, He X, Li Z, Zu Y (2015) J Sep Sci 38:291–300CrossRefGoogle Scholar
  164. 164.
    Bubalo MC, Sabotin I, Radoš I, Valentinčič J, osiljkov T, Brnčić M (2013) Green Process Synth 2:579–590Google Scholar
  165. 165.
    Lévêque JM, Cravotto G (2006) CHIMIA Int J Chem 60:313–320CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP)Université de Poitiers, CNRSPoitiers Cedex 9France
  2. 2.Laboratoire de Chimie Moléculaire et Environnement (LCME)Université Savoie Mont BlancLe Bourget du Lac CedexFrance

Personalised recommendations