Skip to main content

Advertisement

Log in

Ultrasonic extraction and structural identification of polysaccharides from Prunella vulgaris and its antioxidant and antiproliferative activities

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Response surface methodology was used to optimize the ultrasonic extraction of Prunella vulgaris polysaccharides (PVP). When the quality of P. vulgaris was 4.0 g, the optimal extraction conditions were ultrasonic power 210 W, time 50 min, and temperature 70 °C. Using this condition, the experimental yield was agreed closely with the predicted value. Compared with conventional extraction, ultrasonic extraction showed a higher polysaccharide yield. The molecular weights were determined by high-performance gel permeation chromatography. Gas chromatography analysis suggested that PVP comprised of rhamnose, arabinose, xylose, mannose, glucose, and galactose with molar percentages of 2.8, 28.2, 38.5, 11.0, 3.0, and 16.5 %, respectively. The glycosidic linkage analysis showed that PVP contained 1→ and 1→6 glycosidic linkages (48.0 %), 1→2 and 1→4 glycosidic linkages (8.1 %), and 1→3 glycosidic linkages (43.9 %). PVP showed good antioxidant activities by the methods of DPPH radical scavenging assay, oxygen radical absorbance capacity assay, and cellular antioxidant activity assay. The antiproliferative activities of PVP (2.0 mg/mL) on the growth of human hepatoma HepG2, gastric carcinoma SGC 901, and human breast cancer MCF-7 cells were 51.2, 35.2, and 31.8 %, respectively. PVP did not exhibit cytotoxicity against normal liver L02 cells within the tested concentrations. These results demonstrated that polysaccharides isolated from P. vulgaris may be helpful to develop potential antioxidant and antitumor agents for food and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jing Y, Huang L, Lv W, Tong H, Song L, Hu X, Yu R (2014) Structural characterization of a novel polysaccharide from pulp tissues of Litchi chinensis and its immunomodulatory activity. J Agric Food Chem 62(4):902–911

    Article  CAS  Google Scholar 

  2. Chen R, Liu Z, Zhao J, Chen R, Meng F, Zhang M, Ge W (2011) Antioxidant and immunobiological activity of water-soluble polysaccharide fractions purified from Acanthopanax senticosu. Food Chem 127(2):434–440

    Article  CAS  Google Scholar 

  3. Liu C, Chang J, Zhang L, Zhang J, Li S (2012) Purification and antioxidant activity of a polysaccharide from bulbs of Fritillaria ussuriensis maxim. Int J Biol Macromol 50(4):1075–1080

    Article  CAS  Google Scholar 

  4. Bai L, Zhu LY, Yang BS, Shi LJ, Liu Y, Jiang AM, Zhao LL, Song G, Liu TF (2012) Antitumor and immunomodulating activity of a polysaccharide from Sophora flavescens Ait. Int J Biol Macromol 51(5):705–709

    Article  CAS  Google Scholar 

  5. Cai Z, Li W, Wang H, Yan W, Zhou Y, Wang G, Cui J, Wang F (2012) Anti-tumor and immunomodulating activities of a polysaccharide from the root of Sanguisorba officinalis L. Int J Biol Macromol 51(4):484–488

    Article  CAS  Google Scholar 

  6. Fan L, Li J, Deng K, Ai L (2012) Effects of drying methods on the antioxidant activities of polysaccharides extracted from Ganoderma lucidum. Carbohydr Polym 87(2):1849–1854

    Article  CAS  Google Scholar 

  7. You L, Gao Q, Feng M, Yang B, Ren J, Gu L, Cui C, Zhao M (2013) Structural characterisation of polysaccharides from Tricholoma matsutake and their antioxidant and antitumour activities. Food Chem 138(4):2242–2249

    Article  CAS  Google Scholar 

  8. Xu X, Yan H, Zhang X (2012) Structure and immuno-stimulating activities of a new heteropolysaccharide from Lentinula edodes. J Agric Food Chem 60(46):11560–11566

    Article  CAS  Google Scholar 

  9. Zhang Y, Li S, Wang X, Zhang L, Cheung PCK (2011) Advances in lentinan: isolation, structure, chain conformation and bioactivities. Food Hydrocoll 25(2):196–206

    Article  Google Scholar 

  10. Jeff IB, Yuan X, Sun L, Kassim RMR, Foday AD, Zhou Y (2013) Purification and in vitro anti-proliferative effect of novel neutral polysaccharides from Lentinus edodes. Int J Biol Macromol 52:99–106

    Article  CAS  Google Scholar 

  11. You R, Wang K, Liu J, Liu M, Luo L, Zhang Y (2011) A comparison study between different molecular weight polysaccharides derived from Lentinus edodes and their antioxidant activities in vivo. Pharm Biol 49(12):1298–1305

    Article  CAS  Google Scholar 

  12. Jiang C, Wang M, Liu J, Gan D, Zeng X (2011) Extraction, preliminary characterization, antioxidant and anticancer activities in vitro of polysaccharides from Cyclina sinensis. Carbohydr Polym 84(3):851–857

    Article  CAS  Google Scholar 

  13. Ma CW, Feng M, Zhai X, Hu M, You L, Luo W, Zhao M (2013) Optimization for the extraction of polysaccharides from Ganoderma lucidum and their antioxidant and antiproliferative activities. J Taiwan Inst Chem E 44(6):886–894

    Article  CAS  Google Scholar 

  14. Choi JH, Han EH, Hwang YP, Choi JM, Choi CY, Chung YC, Seo JK, Jeong HG (2010) Suppression of PMA-induced tumor cell invasion and metastasis by aqueous extract isolated from Prunella vulgaris via the inhibition of NF-κB-dependent MMP-9 expression. Food Chem Toxicol 48(2):564–571

    Article  CAS  Google Scholar 

  15. Cheung HY, Zhang QF (2008) Enhanced analysis of triterpenes, flavonoids and phenolic compounds in Prunella vulgaris L. by capillary zone electrophoresis with the addition of running buffer modifiers. J Chromatogr A 1213(2):231–238

    Article  CAS  Google Scholar 

  16. Jiang SJ, Zhao LZ, Yu YG, Duan LD, Tan BX (2008) Study on optimization of supercritical fluid extraction conditions of ursolic acid from Prunella vulgaris Linn. leaves. Food Sci 29:294–297

    CAS  Google Scholar 

  17. Fang X, Chang RCC, Yuen WH, Zee SY (2005) Immune modulatory effects of Prunella vulgaris L. Int J Mol Med 15(3):491–496

    Google Scholar 

  18. Liu S, Jiang S, Wu Z, Lv L, Zhang J, Zhu Z, Wu S (2002) Identification of inhibitors of the HIV-1 gp41 six-helix bundle formation from extracts of Chinese medicinal herbs Prunella vulgaris and Rhizoma cibotte. Life Sci 71(15):1779–1791

    Article  CAS  Google Scholar 

  19. Li JW, Ding SD, Ding XL (2007) Optimization of the ultrasonically assisted extraction of polysaccharides from Zizyphus jujuba cv. jinsixiaozao. J Food Eng 80(1):176–183

    Article  CAS  Google Scholar 

  20. Ghafoor K, Choi YH, Jeon JY, Jo IH (2009) Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. J Agric Food Chem 57(11):4988–4994

    Article  CAS  Google Scholar 

  21. Wen L, Lin L, You L, Yang B, Jiang G, Zhao M (2011) Ultrasound-assited extraction and structural identification of polysaccharides from Isodon lophanthoides var. gerardianus (Bentham) H. Hara. Carbohydr Polym 85(3):541–547

    Article  CAS  Google Scholar 

  22. Goula AM (2013) Ultrasound-assisted extraction of pomegranate seed oil-kinetic modeling. J Food Eng 117(4):492–498

    Article  Google Scholar 

  23. Staud AM (1965) Removal of protein-Sevag method. Methods Carbohydr Chem 5:5–6

    Google Scholar 

  24. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  26. Li C, Fu X, Luo F, Huang Q (2013) Effects of maltose on stability and rheological properties of orange oil-in-water emulsion formed by OSA modified starch. Food Hydrocoll 32(1):79–86

    Article  Google Scholar 

  27. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28(1):25–30

    Article  CAS  Google Scholar 

  28. Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL (2002) High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem 50(16):4437–4444

    Article  CAS  Google Scholar 

  29. Song W, Derito CM, Liu MK, He X, Dong M, Liu RH (2010) Cellular antioxidant activity of common vegetables. J Agric Food Chem 58(11):6621–6629

    Article  CAS  Google Scholar 

  30. Zhu Q, Jiang Y, Lin S, Wen L, Wu D, Zhao M, Chen F, Jia Y, Yang B (2013) Structural identification of (1→6)-α-D-glucan, a key responsible for the health benefits of longan, and evaluation of anticancer activity. Biomacromolecules 14(6):1999–2003

    Article  CAS  Google Scholar 

  31. Zhong K, Wang Q (2010) Optimization of ultrasonic extraction of polysaccharides from dried longan. Carbohydr Polym 80(1):19–25

    Article  CAS  Google Scholar 

  32. Lin L, Zhuang M, Zou L, Lei F, Yang B, Zhao M (2012) Structural characteristics of water-soluble polysaccharides from Rabdosia serra (MAXIM.) HARA leaf and stem and their antioxidant capacities. Food Chem 135(2):730–737

    Article  CAS  Google Scholar 

  33. Chakraborty I, Mondal S, Pramanik M, Rout D, Islam SS (2004) Structural investigation of a water-soluble glucan from an edible mushroom Astraeus hygrometricus. Carbohydr Res 339(13):2249–2254

    Article  CAS  Google Scholar 

  34. Li Y, Jiang B, Zhang T, Mu W, Liu J (2008) Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chem 106(2):444–450

    Article  CAS  Google Scholar 

  35. Xie JH, Xie MY, Nie SP, Shen MY, Wang YX, Li C (2010) Isolation, chemical composition and antioxidant activities of a water-soluble polysaccharide from Cyclocarya paliurus (Batal.) Iljinskaja. Food Chem 119(4):1626–1632

    Article  CAS  Google Scholar 

  36. Lai F, Wen Q, Li L, Wu H, Li X (2010) Antioxidant activities of water-soluble polysaccharide extracted from mung bean (Vigna radiata L.) hull with ultrasonic assisted treatment. Carbohydr Polym 81(2):323–329

    Article  CAS  Google Scholar 

  37. Zhou C, Yu X, Zhang Y, He R, Ma H (2012) Ultrasonic degradation, purification and analysis of structure and antioxidant activity of polysaccharide from Porphyra yezoensis Udea. Carbohydr Polym 87(3):2046–2051

    Article  CAS  Google Scholar 

  38. Liao N, Chen S, Ye X, Zhong J, Yin X, Tian J, Liu D (2014) Structural characterization of a novel glucan from Achatina fulica and its antioxidant activity. J Agric Food Chem 62(11):2344–2352

    Article  CAS  Google Scholar 

  39. Wolfe KL, Liu RH (2007) Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agric Food Chem 55(22):8896–8907

    Article  CAS  Google Scholar 

  40. Felice DL, Sun J, Liu RH (2009) A modified methylene blue assay for accurate cell counting. J Funct Foods 1(1):109–118

    Article  Google Scholar 

  41. Xu R, Ye H, Sun Y, Tu Y, Zeng X (2012) Preparation, preliminary characterization, antioxidant, hepatoprotective and antitumor activities of polysaccharides from the flower of tea plant (Camellia sinensis). Food Chem Toxicol 50(7):2473–2480

    Article  CAS  Google Scholar 

  42. Zhang M, Cui SW, Cheung PCK, Wang Q (2007) Antitumor polysaccharides from mushroom: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Technol 18(1):4–19

    Article  Google Scholar 

  43. Bao X, Yuan H, Wang C, Liu J, Lan M (2013) Antitumor and immunomodulatory activities of a polysaccharide from Artemisia argyi. Carbohydr Polym 98(1):1236–1243

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support received from China Postdoctoral Science Foundation (2012M511813), the National Natural Science Foundation of China (No. 31101222), Guangzhou Science and Technology Programm (2013J4500036) and the China Scholarship Council for Chao Li. The critical review of the manuscript by Professor Joe M. Regenstein at Cornell University is most appreciated.

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiong Fu or Lijun You.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Fu, X., Huang, Q. et al. Ultrasonic extraction and structural identification of polysaccharides from Prunella vulgaris and its antioxidant and antiproliferative activities. Eur Food Res Technol 240, 49–60 (2015). https://doi.org/10.1007/s00217-014-2306-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2306-9

Keywords

Navigation