Skip to main content
Log in

An alternative data analytic approach to measure the univariate and multivariate skewness

  • Regular Paper
  • Published:
International Journal of Data Science and Analytics Aims and scope Submit manuscript

Abstract

We introduce a new measure of univariate skewness of a distribution or data based on quantiles and by using the concepts of even and odd functions. Based on this new measure, we then suggest an approach to define the multivariate skewness for the multivariate distributions and multidimensional data and accordingly suggest a measure for it. Using numerous data sets, we illustrate that Mardia’s measure of multivariate skewness appears to be ambiguous in what it actually measures and show that our measure not only has an intuitive appeal, it also unambiguously quantifies what one would view as the multivariate skewness. Approach presented here is data analytic and can be implemented on a computer. Based on the idea of orthogonal transformation of the data, we also suggest another multivariate measure of skewness which may be simpler to compute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Another way to look at this is to realize that, with obvious notations, for a vector \(\begin{bmatrix} \pmb {Y} \\ \pmb {X} \end{bmatrix}\), \(\pmb {X}\) and \(\pmb {Y}-\pmb {\Sigma _{yx}\pmb {\Sigma }_{xx}^{-1} \pmb {X}}\) are uncorrelated.

References

  1. Baringhaus, L., Henze, N.: Limit distributions for measures of multivariate skewness and kurtosis based on projections. J. Multivar. Anal. 38(1), 51–69 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benjamini, Y., Krieger, A.M.: Skewness: Concepts and Measures Encyclopedia of Statistical Sciences. Wiley Online Library, Hoboken (2006)

    Google Scholar 

  3. Bowley, A.L.: Elements of Statistics, vol. 2. P. S. King, Westminster (1920)

    MATH  Google Scholar 

  4. Brown, C.A., Robinson, D.M.: Skewness and kurtosis implied by option prices: a correction. J. Financ. Res. 25(2), 279–282 (2002)

    Article  Google Scholar 

  5. Chatterjee, S., Hadi, A.S., Price, B.: Regression Analysis by Example. Wiley, Hoboken (2000)

    MATH  Google Scholar 

  6. Chvosta, J., Erdman, D.J., Little, M.: Modeling financial risk factor correlation with the copula procedure. In: SAS Global Forum, pp. 340–2011 (2011)

  7. Corrado, C.J., Su, T.: Skewness and kurtosis in S&P 500 index returns implied by option prices. J. Financ. Res. XIX(2), 175–192 (1996)

    Article  Google Scholar 

  8. Flurry, B., Riedwyl, H.: Multivariate Statistics: A Practical Approach. Chapman and Hall, London (1988)

    Book  Google Scholar 

  9. Groeneveld, R.A.: Skewness, Bowley’s Measures of Encyclopedia of Statistical Sciences. Wiley Online Library, Hoboken (2006)

    Google Scholar 

  10. Groeneveld, R.A., Meeden, G.: Measuring skewness and kurtosis. Statistician 33, 391–399 (1984)

    Article  Google Scholar 

  11. Harvey, C.R., Siddique, A.: Conditional skewness in asset pricing tests. J. Finance 55(3), 1263–1295 (2000a)

    Article  Google Scholar 

  12. Harvey, C.R., Siddique, A.: Time-varying conditional skewness and the market risk premium. Res. Bank. Finance 1(1), 27–60 (2000b)

    Google Scholar 

  13. Hinkley, D.V.: On power transformations to symmetry. Biometrika 62(1), 101–111 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Joanes, D.N., Gill, C.A.: Comparing measures of sample skewness and kurtosis. J. R. Stat. Soc. Ser. D (Statistician) 47(1), 183–189 (1998)

    Article  Google Scholar 

  15. Khattree, R., Naik, D.N.: Multivariate Data Reduction and Discrimination with SAS Software. SAS Institute Inc, Cary (2000)

    Google Scholar 

  16. Kim, T.H., White, H.: On more robust estimation of skewness and kurtosis. Finance Res. Lett. 1(1), 56–73 (2004)

    Article  Google Scholar 

  17. Kirby, M.: Geometric Data Analysis: An Empirical Approach to Dimensionality Reduction and the Study of Patterns. Wiley, Hoboken (2001)

    MATH  Google Scholar 

  18. Kraus, A., Litzenberger, R.H.: Skewness preference and the valuation of risk assets. J. Finance 31(4), 1085–1100 (1976)

    Google Scholar 

  19. MacGillivray, H.L.: Skewness and asymmetry: measures of ordering. Ann. Stat. 14, 994–1011 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Malkovich, J.F., Afifi, A.A.: On tests for multivariate normality. J. Am. Stat. Assoc. 68, 176–179 (1973)

    Article  Google Scholar 

  21. Mardia, K.V.: Measures of multivariate skewness and kurtosis with applications. Biometrika 57, 519–530 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mardia, K.V.: Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies. Sankhyā Indian J. Stat. Ser. B 36(2), 115–128 (1974)

    MathSciNet  MATH  Google Scholar 

  23. Mardia, K.V., Foster, K.: Omnibus tests of multinormality based on skewness and kurtosis. Commun. Stat. Theory Methods 12(2), 207–221 (1983)

    Article  MathSciNet  Google Scholar 

  24. Mardia, K.V., Zemroch, P.J.: Algorithm AS 84: measures of multivariate skewness and kurtosis. J. R. Stat. Soc. Ser. C (Appl. Stat.) 24(2), 262–265 (1975)

    Google Scholar 

  25. Móri, T., Rohatgi, V.K., Székely, G.J.: On multivariate skewness and kurtosis. Theory Probab. Appl. 38(3), 547–551 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Naik, D.N., Khattree, R.: Revisiting Olympic track records: some practical considerations in the principal component analysis. Am. Stat. 50, 140–144 (1996)

    Google Scholar 

  27. Oja, H.: On location, scale, skewness and kurtosis of univariate distributions. Scand. J. Stat. 8(3), 154–168 (1981)

    MathSciNet  MATH  Google Scholar 

  28. Oja, H.: Descriptive statistics for multivariate distributions. Stat. Probab. Lett. 6, 327–332 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pearson, K.: Contributions to the mathematical theory of evolution. Philos. Trans. R. Soc. Lond. A 185, 71–110 (1894)

    Article  MATH  Google Scholar 

  30. Pearson, K.: Contributions to the mathematical theory of evolution II: skew variation in homogeneous material. Philos. Trans. R. Soc. Lond. A 86, 343–414 (1895)

    Article  Google Scholar 

  31. Serfling, R.J.: Multivariate Symmetry and Asymmetry Encyclopedia of Statistical Sciences. Wiley Online Library, Hoboken (2006)

    Google Scholar 

  32. Siotani, M., Hayakawa, T., Fujikoshi, Y.: Modern Multivariate Statistical Analysis: A Graduate Course and Handbook. American Sciences Press, Columbus (1985)

    MATH  Google Scholar 

  33. TC2000 Software-Version 7, Available at tc2000.com (2010)

  34. van Zwet, W.R.: Convex Transformations of Random Variables, Mathematical Centre Tract, vol. 7. Mathematisch Centrum, Amsterdam (1964)

    Google Scholar 

  35. Von Hippel, P.: Skewness International Encyclopedia of Statistical Science. Springer, New York (2011)

    Google Scholar 

  36. Yule, G.U.: An Introduction to the Theory of Statistics. C. Griffin Limited, London (1919)

    MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank three referees for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra Khattree.

Appendix

Appendix

Proof of Equation (7)

The coefficient of skewness \(\delta \) is defined in (6) as

$$\begin{aligned} \delta = \frac{\varvec{\int }_0^1\bigg ({\frac{F^{-1}(\alpha )+ F^{-1}(1 - \alpha )}{2}\bigg )^2 d\alpha }}{\varvec{\int }_0^1\bigg (\frac{F^{-1}(\alpha )+ F^{-1}(1 - \alpha )}{2}\bigg )^2 d\alpha + \varvec{\int }_0^1\bigg (\frac{F^{-1}(\alpha )- F^{-1}(1 - \alpha )}{2}\bigg )^2 d\alpha }. \end{aligned}$$

Note that \( \int _0^1(F^{-1}(\alpha ))^2 d\alpha = \int _0^1(F^{-1}(1 - \alpha ))^2 d\alpha = \mu _2'\), the second raw moment of the underlying random variable. However, since the random variable is assumed to have been centered with zero mean, \(\mu _2' = \mu _2 = \sigma ^2 > 0\), the variance. Thus, upon squaring and simplifying, we have

$$\begin{aligned} \delta =\frac{1}{2} {\bigg [ 1 + \frac{\int _0^1({F^{-1}(\alpha ) F^{-1}(1 - \alpha ))} d\alpha }{\mu _2}\bigg ]}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattree, R., Bahuguna, M. An alternative data analytic approach to measure the univariate and multivariate skewness. Int J Data Sci Anal 7, 1–16 (2019). https://doi.org/10.1007/s41060-018-0106-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41060-018-0106-1

Keywords

Navigation