Skip to main content
Log in

Multiscale Study on the Axial Compression Performance of PET FRP–Concrete–Steel Double-Skin Tubular Stub Columns

  • Research paper
  • Published:
International Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

In this paper, the aim is to discuss the applicability of polyethylene terephthalate fiber-reinforced polymer (PET FRP) in DSTC structures. PET FRP can improve the strength and stability of structures by providing constraints for concrete. Herein, experimental and response surface analyses of the axial compressive properties of PET FRP–concrete–steel double-skin tubular stub columns (DSTCs) based on 26 DSTC specimens subjected to axial compression testing are presented. The height of each DSTC specimen is 600 mm, the outer diameter is between 305 and 315 mm, and the thickness of the added concrete is 43 mm. The main parameters are the number of layers on the PET FRP, the compressive strength of the concrete, and the thicknesses of the steel tubes. The experimental results show that the ultimate load and ultimate axial strain can be significantly increased by increasing the number of PET FRP layers, reaching 27.34% and 28.79%, respectively. When the compressive strength of the concrete increases from C30 to C40, the ultimate load and ultimate axial strain values of the DSTCs increase by 12.54% and 8.99%, respectively. In addition, as the thickness of the steel tube increases from 6 to 8 mm, the ultimate load and ultimate axial strain increase by 34.95% and 118.90%, respectively. These results indicate that the introduction of PET FRP significantly improves the overall performance of DSTCs. Increasing the number of PET FRP layers helps to limit the circumferential strain of DSTCs. P6-S8-C40 has the best ultimate load-bearing capacity and ultimate axial strain capacity, which reach 3356.18 kN and 0.1992, respectively. The main purpose of this paper is to study the influences of the PET FRP thickness (in different layers), steel tube thickness, and concrete strength on the properties, damage mode and damage process of DSTCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability Statement

Data sets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Teng J (2018) New-material hybrid structures. China Civ Eng J 51(12):1–11

    Google Scholar 

  2. Teng JG, Yu T, Wong Y, Dong S (2007) Hybrid FRP–concrete–steel tubular columns: concept and behavior. Constr Build Mater 21(4):846–854

    Article  Google Scholar 

  3. Wong Y, Yu T, Teng J, Dong S (2008) Behavior of FRP-confined concrete in annular section columns. Compos Part B-eng 39(3):451–466

    Article  Google Scholar 

  4. Fanggi BAL, Ozbakkaloglu T (2013) Compressive behavior of aramid FRP–HSC–steel double-skin tubular columns. Constr Build Mater 48:554–565

    Article  Google Scholar 

  5. Xiong Z, Deng J, Liu F, Li L, Feng W (2018) Experimental Investigation on the behavior of GFRP-RAC-steel double-skin tubular columns under axial compression. Thin Wall Struct 132:350–361

    Article  Google Scholar 

  6. Ren Y, Wang H, Wu G, Guan Z, Yuan L (2023) Study on the anchoring performance and failure mechanism of basalt/glass hybrid fiber reinforced plastic anchors in coupled environment. Polym Composite 45(1):946–962

    Article  Google Scholar 

  7. Zhang SS, Jedrzejko MJ, Ke Y, Yu T, Nie XF (2023) Shear strengthening of RC beams with NSM FRP strips: concept and behaviour of novel FRP anchors. Compos Struct 312:18

    Article  Google Scholar 

  8. Pan M, Wang D (2024) Cyclic axial compression stress-strain model for FRP-confined concrete-encased cross-shaped steel columns. Eng Struct 298:14

    Article  Google Scholar 

  9. Zhang X, Chen P, Wang H, Xu C, Wang H, Zhang L (2023) Constitutive model of FRP tube-confined alkali-activated slag lightweight aggregate concrete columns under axial compression. Buildings 13(9):23

    Article  Google Scholar 

  10. Teng J-G, Wang Z, Yu T, Zhao Y, Li L-J (2018) Double-tube concrete columns with a high-strength internal steel tube: concept and behaviour under axial compression. Adv Struct Eng 21(10):1585–1594

    Article  Google Scholar 

  11. Tian H, Zhou Z, Wei Y, Lu J (2020) Behavior and Modeling of ultra-high performance concrete-filled FRP tubes under cyclic axial compression. J Compos Constr 24(5):15

    Article  Google Scholar 

  12. Jiang T, Lin G, Xie P (2023) Behavior of large-scale hybrid FRP-concrete-steel double-skin tubular columns subjected to eccentric compression. Eng Struct 275:13

    Article  Google Scholar 

  13. Zeng L, Li L, Chen L, Liu F (2019) Study of compressive behaviour of FRP-recycled aggregate concrete–steel stub columns. Mag Concrete Res 71(15):794–808

    Article  Google Scholar 

  14. Chandramouli P, Jayaseelan R, Pandulu G (2022) Axial compression behaviour of hybrid composite FRP-concrete-steel double-skin tubular columns with various fibre orientations. Case Stud Constr Mat 17:23

    Google Scholar 

  15. Han S, Zhou A, Ou J (2021) Relationships between interfacial behavior and flexural performance of hybrid steel-FRP composite bars reinforced seawater sea-sand concrete beams. Compos Struct 277:12

    Article  Google Scholar 

  16. Chen G, Wang Y, Yu T, Zhang B, Han B (2022) Elliptical FRP–concrete–steel double-skin tubular columns: axial behavior, interaction mechanism, and modeling. J Compos Constr 26(6):17

    Article  Google Scholar 

  17. Ding J-n, Ren Q, Wang Q, Yu J, Li Y (2023) Axial compressive performance of square concrete-encased concrete-filled double-skin steel tube stub columns. Eng Struct 276:14

    Article  Google Scholar 

  18. Zhang D, Li W, Fu K, Li T, Deng R, Wang Y (2022) Ultimate compressive capacity of tapered concrete-filled double skin steel tubular stub columns with large hollow ratio. J Constr Steel Res 196:15

    Article  Google Scholar 

  19. Jahangir H, Soleymani A, Esfahani MR (2022) Investigating the confining effect of steel reinforced polymer and grout composites on compressive behavior of square concrete columns. Iran J Sci Technol Trans Civ Eng 47(2):775–791

    Article  Google Scholar 

  20. Ren Y, Wang H, Guan Z, Yang K (2023) Evaluation of the properties and applications of FRP bars and anchors: a review. Rev Adv Mater Sci 62(1):34

    Google Scholar 

  21. Onyelowe KC, Ebid AM, Mahdi HA, Soleymani A, Jayabalan J, Jahangir H, Samui P, Singh RP (2022) Modeling the confined compressive strength of CFRP-jacketed noncircular concrete columns using artificial intelligence techniques. Cogent Eng 9(1):2122156

    Article  Google Scholar 

  22. Bhat P, Jamatia R (2023) Analytical stress-strain model of hybrid FRP-concrete-steel double skin tubular columns under axial compression. Eng Struct 286:16

    Article  Google Scholar 

  23. Zakir M, Sofi FA, Naqash JA (2022) Compressive testing and finite element analysis-based confined concrete model for stiffened square FRP-concrete-steel double-skin tubular columns. J Build Eng 44:19

    Google Scholar 

  24. Zeng J-J, Hao Z-H, Liang X-C, Li J-L, Zhuge Y, Liu F, Li L-J (2024) Durability assessment of hybrid double-skin tubular columns (DSTCs) under simulated marine environments. Eng Struct 301:117168

    Article  Google Scholar 

  25. Bai W, Li Y, Ji J, Liu Y, Zhang L, Wang R, Jiang L, He L (2022) Axial compression behavior of symmetrical full-scale concrete filled double skin steel tube stub columns. Symmetry 14(2):223

    Article  Google Scholar 

  26. Li W, Wang D, Han L-H (2017) Behaviour of grout-filled double skin steel tubes under compression and bending: experiments. Thin Wall Struct 116:307–319

    Article  Google Scholar 

  27. Al-Mekhlafi GM, Al-Osta MA, Sharif AM (2020) Behavior of eccentrically loaded concrete-filled stainless steel tubular stub columns confined by CFRP composites. Eng Struct 205:110113

    Article  Google Scholar 

  28. Na L, Yiyan L, Shan L, Lan L (2018) Slenderness effects on concrete-filled steel tube columns confined with CFRP. J Constr Steel Res 143:110–118

    Article  Google Scholar 

  29. Pour AF, Gholampour A, Zheng J, Ozbakkaloglu T (2019) Behavior of FRP-confined high-strength concrete under eccentric compression: tests on concrete-filled FRP tube columns. Compos Struct 220:261–272

    Article  Google Scholar 

  30. Xiong M, Lan Z, Chen G, Lu Y, Xu Z (2021) Behavior of FRP-HSC-steel tubular columns under axial compression: a cmparative study. Compos Struct 261:113566

    Article  Google Scholar 

  31. Albitar M, Ozbakkaloglu T, Louk Fanggi BA (2015) Behavior of FRP-HSC-steel double-skin tubular columns under cyclic axial compression. J Compos Constr 19(2):13

    Article  Google Scholar 

  32. Idris Y, Ozbakkaloglu T (2014) Flexural behavior of FRP-HSC-steel composite beams. Thin Wall Struct 80:207–216

    Article  Google Scholar 

  33. Sojobi A, Owamah H (2014) Evaluation of the suitability of low-density polyethylene (LDPE) waste as fine aggregate in concrete. Niger J Technol 33(4):409–425

    Article  Google Scholar 

  34. Sojobi AO, Nwobodo SE, Aladegboye OJ (2016) Recycling of polyethylene terephthalate (PET) plastic bottle wastes in bituminous asphaltic concrete. Cogent Eng 3(1):1133480

    Article  Google Scholar 

  35. Ye Y-Y, Liang S-D, Feng P, Zeng J-J (2021) Recyclable LRS FRP composites for engineering structures: current status and future opportunities. Compos Part B-eng 212:22

    Article  Google Scholar 

  36. Yuan W-Y, Han Q, Bai Y-L, Du X-L, Yan Z-W (2021) Compressive behavior and modelling of engineered cementitious composite (ECC) confined with LRS FRP and conventional FRP. Compos Struct 272:15

    Article  Google Scholar 

  37. Yan Z-W, Bai Y-L, Ozbakkaloglu T, Gao W-Y, Zeng J-J (2021) Rate-dependent compressive behavior of concrete confined with large-rupture-strain (LRS) FRP. Compos Struct 272:15

    Article  Google Scholar 

  38. Zeng J-J, Zhu D-H, Liao J, Zhuge Y, Bai Y-L, Zhang L (2022) Large-rupture-strain (LRS) FRP-confined concrete in square stub columns: effects of specimen size and assessments of existing models. Constr Build Mater 326:18

    Article  Google Scholar 

  39. Yan Z-W, Bai Y-L, Ozbakkaloglu T, Gao W-Y, Zeng J-J (2021) Axial impact behavior of large-rupture-strain (LRS) fiber reinforced polymer (FRP)-confined concrete cylinders. Compos Struct 276:13

    Article  Google Scholar 

  40. Zhu D-H, Zhong G-Q, Zeng J-J, Liao J (2023) Behavior and model evaluation of large-rupture-strain (LRS) FRP-confined concrete-encased high-strength steel columns under axial compression. Thin Wall Struct 183:15

    Article  Google Scholar 

  41. Liu Z, Wang H, Yang L, Du J (2022) Research on mechanical properties and durability of Flax/Glass fiber bio-hybrid FRP composites laminates. Compos Struct 290:12

    Article  Google Scholar 

  42. Wang H, Yang K, Guan Z, Gao S (2023) Orthogonal study on mechanical and tension-tension fatigue properties of flax/glass fiber hybrid FRP composites. Fiber Polym 24(6):2173–2193

    Article  Google Scholar 

  43. Zhang M, Guan Z, Ren Y, Wang H (2023) Multi-scale study on the mechanical properties of pultruded GFRP laminates. Fiber Polym 24(6):2133–2146

    Article  Google Scholar 

  44. Saleem S, Pimanmas A, Qureshi MI, Rattanapitikon W (2021) Axial behavior of PET FRP-confined reinforced concrete. J Compos Constr 25(1):1–17

    Article  Google Scholar 

  45. Zeng J-J, Gao W-Y, Duan Z-J, Bai Y-L, Guo Y-C, Ouyang L-J (2020) Axial compressive behavior of polyethylene terephthalate/carbon FRP-confined seawater sea-sand concrete in circular columns. Constr Build Mater 234:16

    Article  Google Scholar 

  46. Yu T, Zhang S, Huang L, Chan C (2017) Compressive behavior of hybrid double-skin tubular columns with a large rupture strain FRP tube. Compos Struct 171:10–18

    Article  Google Scholar 

  47. Liao J, Zeng J-J, Zhuge Y, Zheng Y, Ma G, Zhang L (2023) FRP-confined concrete columns with a stress reduction-recovery behavior: a state-of-the-art review, design recommendations and model assessments. Compos Struct 321:39

    Article  Google Scholar 

  48. Zeng JJ, Liao JJ, Zhu DH, Li PD (2023) Axial Compressive behavior and design-oriented model for large-rupture-strain (LRS) FRP-confined concrete in rectangular columns. J Build Eng 75:23

    Google Scholar 

  49. Zhou JK, Zeng JJ, Liang QJ, Dai HS, Fan TH (2023) Compressive behavior of PET FRP-confined concrete encased CFST columns. J Constr Steel Res 202:16

    Article  Google Scholar 

  50. Ozbakkaloglu T (2015) A novel FRP–dual-grade concrete–steel composite column system. Thin Wall Struct 96:295–306

    Article  Google Scholar 

  51. Jirawattanasomkul T, Dai J-G, Zhang D, Senda M, Ueda T (2014) Experimental study on shear behavior of reinforced-concrete members fully wrapped with large rupture-strain FRP composites. J Compos Constr 18(3):12

    Article  Google Scholar 

  52. Ye YY, Liang SD, Feng P, Zeng JJ (2021) Recyclable LRS FRP composites for engineering structures: current status and future opportunities. Compos Part B-eng 212:12

    Article  Google Scholar 

  53. Bai Y-L, Dai J-G, Mohammadi M, Lin G, Mei S-J (2019) Stiffness-based design-oriented compressive stress-strain model for large-rupture-strain (LRS) FRP-confined concrete. Compos Struct 223:18

    Article  Google Scholar 

  54. Bai Y-L, Zhang Y-F, Jia J-F, Han Q, Gao W-Y (2022) Compressive behavior of double-skin tubular stub columns with recycled aggregate concrete and a PET FRP jacket. Constr Build Mater 332:17

    Article  Google Scholar 

  55. Mazzotti C (2011) The effect of the number of strengthening layers on the FRP-concrete bond behaviour. Eur J Environ Civ En 15(9):1277–1296

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Natural Science Foundation of Heilongjiang Province with Grant No. YQ2023E031, the Fundamental Research Funds for the Central Universities with Grant No. 3072023CFJ0206, the National Natural Science Foundation of China (NSFC) with Grant No. 51708092, and the Postdoctoral Research Foundation of China with Grant No. 2018M631894.

Funding

Natural Science Foundation of Heilongjiang Province, YQ2023E031, Hongguang Wang, Fundamental Research Funds for the Central Universities, 3072023CFJ0206, Hongguang Wang, National Natural Science Foundation of China, 51708092, Hongguang Wang, Postdoctoral Research Foundation of China, 2018M631894, Hongguang Wang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongguang Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Du, J., Gao, S. et al. Multiscale Study on the Axial Compression Performance of PET FRP–Concrete–Steel Double-Skin Tubular Stub Columns. Int J Civ Eng (2024). https://doi.org/10.1007/s40999-024-00954-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40999-024-00954-5

Keywords

Navigation