Skip to main content
Log in

Factors Influencing the Dynamic Shear Modulus and Damping Ratio of Granulated Rubber–Clay Mixtures in Xiong’an New Area

  • Research paper
  • Published:
International Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

In this study, the dynamic properties of a mixture of granulated rubber and locally sourced Xiong’an clay are investigated, to promote the beneficial use of rubber–clay mixture (RCM) as a seismic isolation material in this area. A series of cyclic triaxial tests in the shear strain range of 10–4 ~ 10–2 is conducted, considering various scenarios of granulated rubber content, effective confining pressure, water content, dry density, cycle number, and consolidation time. The influences of these factors on the dynamic shear modulus and damping ratio of RCM are investigated and dominant factors are revealed. The results show that the shear modulus of RCM decreases with increasing rubber and water content whereas an opposite trend appears for the increased confining pressure, dry density, and consolidation time. Rubber content appears to be a dominant factor for the normalized shear modulus. The damping ratio of RCM is significantly related to the rubber content and effective confining pressure. A shear strain threshold of about 0.3% is observed concerning the influence of rubber content on the damping ratio. The G/Gmax ~ γ and D ~ γ curves of RCM can be well described by the Hardin–Drnevich model. Based on the test results, correlations of the parameters of the Hardin–Drnevich model with rubber content and effective confining pressure are developed. The proposed empirical formulas can provide a useful guide in the estimation of dynamic properties of RCM for the preliminary design calculations before detailed laboratory measurements have been performed in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Availability of Data and Materials

All data used during the study are available from the corresponding author by request.

References

  1. Tafreshi SNM, Mehrjardi GT, Dawson AR (2012) Buried pipes in rubber-soil backfilled trenches under cyclic loading. J Geotech Geoenviron 138(11):1346–1356. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000710

    Article  Google Scholar 

  2. Moo-Young H, Sellasie K, Zeroka D, Sabnis G (2003) Physical and chemical properties of recycled tire shreds for use in construction. J Environ Eng 129(10):921–929. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:10(921)

    Article  CAS  Google Scholar 

  3. Zhou E, Cui L, Zuo X, Wang L (2023) Dynamic behaviour of pipe protected by rubber–soil mixtures. Geosynth Int 30(3):1751–7613. https://doi.org/10.1680/jgein.21.00071

    Article  Google Scholar 

  4. Lee JS, Dodds J, Santamarina JC (2007) Behavior of rigid-soft particle mixtures. J Mater Civil Eng 19(2):179–184. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:2(179)

    Article  CAS  Google Scholar 

  5. Hazarika H, Kohama E, Sugano T (2008) Underwater shake table tests on waterfront structures protected with tire chips cushion. J Geotech Geoenviron 134(12):1706–1719. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:12(1706)

    Article  Google Scholar 

  6. Bandyopadhyay S, Sengupta A, Reddy GR (2015) Performance of sand and shredded rubber tire mixture as a natural base isolator for earthquake protection. Earthq Eng Eng Vib 14(4):683–693. https://doi.org/10.1007/s11803-015-0053-y

    Article  Google Scholar 

  7. Pitilakis K, Karapetrou S, Tsagdi K (2015) Numerical investigation of the seismic response of RC buildings on soil replaced with rubber–sand mixtures. Soil Dyn Earthq Eng 79:237–252. https://doi.org/10.1016/j.soildyn.2015.09.018

    Article  Google Scholar 

  8. Sun QQ, Hou MH, Dias D (2024) Numerical study on the use of soft material walls to enhance seismic performance of an existing tunnel. Undergr Space 15:90–112. https://doi.org/10.1016/j.undsp.2023.08.009

    Article  Google Scholar 

  9. Pistolas GA, Anastasiadis A, Pitilakis K (2017) Dynamic behaviour of granular soil materials mixed with granulated rubber: effect of rubber content and granularity on the small-strain shear modulus and damping ratio. Geotech Geol Eng 36(2):1267–1281. https://doi.org/10.1007/s10706-017-0391-9

    Article  Google Scholar 

  10. Senetakis K, Anastasiadis A, Pitilakis K (2012) Dynamic properties of dry sand/rubber (SRM) and gravel/rubber (GRM) mixtures in a wide range of shearing strain amplitudes. Soil Dyn Earthq Eng 33(1):38–53. https://doi.org/10.1016/j.soildyn.2011.10.003

    Article  Google Scholar 

  11. Sarajpoor S, Kavand A, Zogh P, Ghalandarzadeh A (2020) Dynamic behavior of sand-rubber mixtures based on hollow cylinder tests. Constr Build Mater 251:118948. https://doi.org/10.1016/j.conbuildmat.2020.118948

    Article  Google Scholar 

  12. Madhusudhan BR, Boominathan A, Banerjee S (2017) Static and large-strain dynamic properties of sand–rubber tire shred mixtures. J Mater Civil Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002016

    Article  Google Scholar 

  13. Edinçliler A, Yildiz O (2021) Effects of processing type on the shear modulus and damping ratio of waste tire-sand mixtures. Geosynth Int 29(4):389–408. https://doi.org/10.1680/jgein.21.00008a

    Article  Google Scholar 

  14. Bahadori H, Farzlizadeh R (2018) Dynamic properties of saturated sands mixed with tyre powders and tyre shreds. Int J Civ Eng 16(4):395–408. https://doi.org/10.1007/s40999-016-0136-9

    Article  Google Scholar 

  15. Ehsani M, Shariatmadari N, Mirhosseini SM (2015) Shear modulus and damping ratio of sand-granulated rubber mixtures. J Cent South Univ 22(8):3159–3167. https://doi.org/10.1007/s11771-015-2853-7

    Article  CAS  Google Scholar 

  16. Nakhaei A, Maraandi SM, Kermani SS, Bagheripour MH (2012) Dynamic properties of granular soils mixed with granulated rubber. Soil Dyn Earthq Eng 43:124–132. https://doi.org/10.1016/j.soildyn.2012.07.026

    Article  Google Scholar 

  17. Wang L, Xiao X, Ji W, Aimable I, Wang B, Sun K (2021) Dynamic properties of the mucky clay improved with the steel slag and the rubber particles. Constr Build Mater 294:123489. https://doi.org/10.1016/j.conbuildmat.2021.123489

    Article  Google Scholar 

  18. Wang Z, Mei G (2012) Dynamic properties of rubber cement stabilized soil based on resonant column tests. Mar Georesour Geotechnol 30(4):333–346. https://doi.org/10.1080/1064119X.2011.631693

    Article  MathSciNet  CAS  Google Scholar 

  19. Chen K, Wang Q, Luo D, Zhou B, Zhang K (2020) Study on dynamic characteristics of rubber-red clay mixtures. Adv Mater Sci Eng 2020:11. https://doi.org/10.1155/2020/2343242

    Article  CAS  Google Scholar 

  20. Akbarimehr D, Fakharian K (2021) Dynamic shear modulus and damping ratio of clay mixed with waste rubber using cyclic triaxial apparatus. Soil Dyn Earthq Eng 140:106435. https://doi.org/10.1016/j.soildyn.2020.106435

    Article  Google Scholar 

  21. Rios S, Kowalska M, da Fonseca AV (2021) Cyclic and dynamic behavior of sand–rubber and clay–rubber mixtures. Geotech Geol Eng 39(5):1–19. https://doi.org/10.1007/S10706-021-01704-3

    Article  Google Scholar 

  22. GB/T 50123 (2019) Standard for geotechnical testing method. China Planning Press, Beijing, pp 8–15

    Google Scholar 

  23. Kumar SS, Krishna AM, Dey A (2017) Evaluation of dynamic properties of sandy soil at high cyclic strains. Soil Dyn Earthq Eng 99:157–167. https://doi.org/10.1016/j.soildyn.2017.05.016

    Article  Google Scholar 

  24. Wu Q, Ma WJ, Liu Q, Zhao K, Chen G (2021) Dynamic shear modulus and damping ratio of rubber-sand mixtures with a wide range of rubber content. Mater Today Commun 27(2):102341. https://doi.org/10.1016/j.mtcomm.2021.102341

    Article  CAS  Google Scholar 

  25. Anastasiadis A, Senetakis K, Pitilakis K (2012) Small-strain shear modulus and damping ratio of sand-rubber and gravel-rubber mixtures. Geotech Geol Eng 30(2):363–382. https://doi.org/10.1007/s10706-011-9473-2

    Article  Google Scholar 

  26. Brara A, Brara A, Daouadji A, Bali A, Daya EM (2017) Dynamic properties of dense sand-rubber mixtures with small particles size ratio. Eur J Environ Civ En 21(9):1–15. https://doi.org/10.1080/19648189.2016.1139509

    Article  Google Scholar 

  27. Edincliler A, Cabalar AF, Cevik A (2013) Modelling dynamic behaviour of sand–waste tires mixtures using neural networks and neuro-Fuzzy. Eur J Environ Civ Eng 17(8):720–741. https://doi.org/10.1080/19648189.2013.814552

    Article  Google Scholar 

  28. Wang LY, Zhou YJ, Yan JT, Wang BH, Jing HJ (2019) Experiment of dynamic shear modulus and damping ratio of new geo-filler composed of gravel steel slag and rubble particles. China J Highw Transp 32(7):31–40. https://doi.org/10.19721/j.cnki.1001-7372.2019.07.004

    Article  Google Scholar 

  29. Liu FC, Yao WY, Bu GB, Jing LP, Bin J (2020) Effect of particle size ratio of rubber to sand on small strain dynamic characteristics of rubber-sand mixtures. Chinese J Geotech Eng 42(09):1669–1678. https://doi.org/10.11779/CJGE202009011

    Article  Google Scholar 

  30. Mashiri MS, Vinod JS, Sheikh MN, Carraro AH (2018) Shear modulus of sand–tyre chip mixtures. Environ Geotech 5(6):336–344. https://doi.org/10.1680/jenge.16.00016

    Article  Google Scholar 

  31. Liu QF, Zhuang HY, Wu Q, Zhao K, Chen GX (2021) Dynamic shear modulus and damping ratio of rubber-sand mixtures in different range of shearing strain amplitudes. J Vib Eng 34(04):712–720. https://doi.org/10.16385/j.cnki.issn.1004-4523.2021.04.007

    Article  Google Scholar 

  32. Mojtahedzadeh N, Ghalandarzadeh A, Motamed R (2021) Experimental evaluation of dynamic characteristics of firouzkooh sand using cyclic triaxial and bender element tests. Int J Civ Eng 20:125–138. https://doi.org/10.1007/s40999-021-00644-6

    Article  Google Scholar 

  33. Bayat M, Ghalandarzadeh A (2019) Influence of depositional method on dynamic properties of granular soil. Int J Civ Eng 17(6):907–920. https://doi.org/10.1007/s40999-019-00412-7

    Article  Google Scholar 

  34. Bayat M, Ghalandarzadeh A (2018) Stiffness degradation and damping ratio of sand-gravel mixtures under saturated state. Int J Civ Eng 16(10):1261–1277. https://doi.org/10.1007/s40999-017-0274-8

    Article  Google Scholar 

  35. Wei L, Lu YX, Zhou ZH, Wang Q, Yang B, Tang HM, Li TL (2019) Dynamic characteristics of unsaturated loess and their influences on ground vibration parameters of sites. Chinese J Geotech Eng 41(S2):145–148. https://doi.org/10.11779/CJGE2019S2037

    Article  Google Scholar 

  36. Wu MT, Liu FC, Chen JL, Chen L (2018) Influence of water content on dynamic shear modulus and damping ratio of rubber-sand mixture under large strains. Rock Soil Mech 39(3):803–814. https://doi.org/10.16285/j.rsm.2017.0956

    Article  CAS  Google Scholar 

  37. Sun ZL, Dang JQ, Fan HH, Wang F (2012) Experimental research on factors influencing dynamic shear modulus of dispersive clay. Rock Soil Mech 33(12):3669–3673. https://doi.org/10.16285/j.rsm.2012.12.016

    Article  CAS  Google Scholar 

  38. Fakharian K, Ahmad A (2020) Effect of anisotropic consolidation and rubber content on dynamic parameters of granulated rubber-sand mixtures. Soil Dyn Earthq Eng 141(10):106531. https://doi.org/10.1016/j.soildyn.2020.106531

    Article  Google Scholar 

  39. Hardin BO, Drnevich VP (1972) Shear modulus and damping in soils: design equations and curves. J Soil Mech Found Div. https://doi.org/10.1061/JSFEAQ.0001760

    Article  Google Scholar 

Download references

Funding

The work was financially supported by the Chunhui Program of Natural Science Foundation of Hebei Province (E2022201021) and the Science Research Project of Hebei Education Department (ZD2020157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangqiang Sun.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Appendix

Appendix

The result of the compaction test is shown in Fig. 21. The tests were carried out using a heavy compaction test (hammer weight: 4.5 kg, drop height: 457 mm, unit volume compaction power: 2684.9 kJ/m3, three layers and 95 times for each layer). The dry density for each sample with different RC was controlled based on the approximately 80% maximum dry density.

Fig. 21
figure 21

Variation of the maximum dry density with water content for various rubber contents

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, A., Sun, Q. & Liu, H. Factors Influencing the Dynamic Shear Modulus and Damping Ratio of Granulated Rubber–Clay Mixtures in Xiong’an New Area. Int J Civ Eng (2024). https://doi.org/10.1007/s40999-023-00925-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40999-023-00925-2

Keywords

Navigation