Skip to main content
Log in

Design of Robust Model Reference Adaptive Controller for a Wider Class of Nonlinear Systems

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

In this paper, a novel control approach, the state-dependent robust model reference adaptive controller, is presented for a broad class of nonlinear systems with unknown parameters and matched uncertainties. At first, the well-known model reference adaptive control (MRAC) is designed for the system by considering the pseudo-linearized description, making it possible to deal with a broad category of nonlinear systems with unknown parameters without linearization. Also, state-dependent matrices are used to calculate time-varying gains, which extends the domain of the controller. In many cases, the fast adaptation of parameters using the MRAC technique may result in undesired oscillations in the control law and system states. Then, the robust controller is designed to increase the robustness of the system against these oscillations. The error feedback signal is included in the system state equations as a control input to decrease the amplitude of oscillations by solving a series of arisen state-dependent linear matrix inequalities. The main contribution of this paper, rather than some of the other proposed robust MRAC controllers, is that it covers a broad class of nonlinear systems. Finally, to demonstrate the effectiveness of the proposed technique in terms of convergence rate, accuracy, and robustness in the reference trajectory tracking, it is applied to Genesio chaotic system having unknown parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Albertos P, Antonio S (2006) Multivariable control systems: an engineering approach. Springer Science and Business Media, Berlin

    Google Scholar 

  • Batmani Y (2017) Blood glucose concentration control for type 1 diabetic patients: a non-linear suboptimal approach. IET Syst Biol 11(4):119–125

    Article  Google Scholar 

  • Batmani Y, Davoodi M, Meskin N (2016) Nonlinear suboptimal tracking controller design using state-dependent Riccati equation technique. IEEE Trans Control Syst Technol 25(5):1833–1839

    Article  Google Scholar 

  • Batmani Y, Khaloozadeh H (2016) On the design of suboptimal sliding manifold for a class of nonlinear uncertain time-delay systems. Int J Syst Sci 47(11):2543–2552

    Article  MathSciNet  Google Scholar 

  • Bavarsad A, Fakharian A, Menhaj MB (2020) Optimal sliding mode controller for an active transfemoral prosthesis using state-dependent Riccati equation approach. Arab J Sci Eng 45(8):6559–6572

    Article  Google Scholar 

  • Cao S, Li Y (2012). The pseudo-linearization and any order approximate analytical solutions for nonlinear dynamical equation. IEEE, pp 54–58

  • Chakrabarty AK, Bhattacharya S (2010). Robust model reference adaptive controller for single variable non-linear plants. IEEE, pp 1–5

  • Çimen T (2008) State-dependent Riccati equation (SDRE) control: a survey. IFAC Proc Vol 41(2):3761–3775

    Article  Google Scholar 

  • Çimen T (2010) Systematic and effective design of nonlinear feedback controllers via the state-dependent Riccati equation (SDRE) method. Annu Rev Control 34(1):32–51

    Article  Google Scholar 

  • Çimen T (2012) Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis. J Guid Control Dyn 35(4):1025–1047

    Article  Google Scholar 

  • Çimen T, Banks SP (2004) Nonlinear optimal tracking control with application to super-tankers for autopilot design. Automatica 40(11):1845–1863

    Article  MathSciNet  Google Scholar 

  • Cloutier J.R (1997) State-dependent Riccati equation techniques: an overview. In: Proceedings of the 1997 American control conference (Cat. No. 97CH36041), pp 932–936. IEEE

  • Eugene L, Kevin W, Howe D (2013) Robust and adaptive control with aerospace applications. Springer, London

    MATH  Google Scholar 

  • Fakharian A, Hamidi Beheshti MT (2010) Solving linear and nonlinear optimal control problem using modified adomian decomposition method. J Comput Robot 1(1)

  • Han J, Yu S, Yi S (2019) Oxygen excess ratio control for proton exchange membrane fuel cell using model reference adaptive control. Int J Hydrog Energy 44(33):18425–18437

    Article  Google Scholar 

  • Hua C, Guan X, Shi P (2006) Decentralized robust model reference adaptive control for interconnected time-delay systems. J Comput Appl Math 193(2):383–396

    Article  MathSciNet  Google Scholar 

  • Ioannou PA, Sun J (2012) Robust adaptive control. Courier Corporation

  • Jin L, Chen G (2007) A parallel robust model reference control method based on neural network. In: 2007 IEEE international conference on control and automation, pp 1377–1380. IEEE

  • Kalamian N, Khaloozadeh H, Ayati M (2019) Design of state-dependent impulsive observer for non-linear time-delay systems. IET Control Theory Appl 13(18):3155–3163

    Article  Google Scholar 

  • Kalamian N, Khaloozadeh H, Ayati SM (2020) Adaptive state-dependent impulsive observer design for nonlinear deterministic and stochastic dynamics with time-delays. ISA Trans 98:87–100

    Article  Google Scholar 

  • Kalamian N, Khaloozadeh H, Ayati M (2017) State-dependent impulsive observer design for nonlinear time-delay systems. In: 2017 5th international conference on control, instrumentation, and automation (ICCIA), pp 183–188. IEEE

  • Kalamian N, Khaloozadeh H, Ayati M (2019). Design of adaptive state-dependent impulsive observer for nonlinear time-delay systems. IEEE, pp 885–890

  • Kang S, Wu H, Yang X, Li Y, Pan L, Chen B (2021) Fractional robust adaptive decoupled control for attenuating creep, hysteresis and cross coupling in a parallel piezostage. Mech Syst Signal Process 159:107764

    Article  Google Scholar 

  • Khlaief A, Boussak M, Chaari A (2014) A MRAS-based stator resistance and speed estimation for sensorless vector controlled IPMSM drive. Electr Power Syst Res 108:1–15

    Article  Google Scholar 

  • Korayem MH, Nekoo S (2015) State-dependent differential Riccati equation to track control of time-varying systems with state and control nonlinearities. ISA Trans 57:117–135

    Article  Google Scholar 

  • Korayem MH, Nekoo SR (2016) The SDRE control of mobile base cooperative manipulators: collision free path planning and moving obstacle avoidance. Robot Auton Syst 86:86–105

    Article  Google Scholar 

  • Li X, Li S (2014) Speed control for a PMSM servo system using model reference adaptive control and an extended state observer. J Power Electr 14(3):549–563

    Article  Google Scholar 

  • Liu Q, Thul A, Hameyer K (2014). A robust model reference adaptive controller for the PMSM drive system with torque estimation and compensation. IEEE, pp 665–671

  • Maity A, Höcht L, Holzapfel F (2019) Time-varying parameter model reference adaptive control and its application to aircraft. Eur J Control 50:161–175

    Article  MathSciNet  Google Scholar 

  • Maleki N, Sedigh AK, Labibi B (2006) Robust model reference adaptive control of active suspension system. In: 2006 14th mediterranean conference on control and automation, pp 1–6. IEEE

  • Min-an T, Xiao-Ming W, Jie C, Li C (2017). On lyapunov stability theory for model reference adaptive control. IEEE, pp 1055–1060

  • Monfared MN, Fakharian A, Menhaj MB (2021) A new modified polynomial-based optimal control design approach. Proc Inst Mech Eng Part I J Syst Control Eng 235(3):355–370

    Google Scholar 

  • Monfared MN, Fakharian A, Menhaj MB, Abbasi R (2020) Optimal control of immunogenic tumor cells population growth. J Control Eng Appl Inf 22(3):5–12

    Google Scholar 

  • Najafi A, Spencer BF Jr (2019) Adaptive model reference control method for real-time hybrid simulation. Mech Syst Signal Process 132:183–193

    Article  Google Scholar 

  • Narendra KS, Annaswamy AM (1986) Robust adaptive control. Adaptive and learning systems. pp 3–31, Springer, Berlin

  • Nasiri N, Fakharian A, Menhaj MB (2020) Observer-based robust control for flexible-joint robot manipulators: A state-dependent Riccati equation-based approach. Trans Inst Meas Control 42(16):3135–3155

    Article  Google Scholar 

  • Nazari Monfared M, Yazdanpanah M (2014) Friction compensation for dynamic and static models using nonlinear adaptive optimal technique. AUT J Model Simul 46(1):1–10

    Google Scholar 

  • Nekoo SR (2019) Model reference adaptive state-dependent Riccati equation control of nonlinear uncertain systems: Regulation and tracking of free-floating space manipulators. Aerosp Sci Technol 84:348–360

    Article  Google Scholar 

  • Rajpurohit T, Haddad WM, Yucelen T (2016) Output feedback adaptive control with low-frequency learning and fast adaptation. J Guid Control Dyn 39(1):16–31

    Article  Google Scholar 

  • Saad NH, El-Sattar AA, Gad MA (2016). Sensorless field oriented control based on improved MRAS speed observer for permanent magnet synchronous motor drive. IEEE, pp 991–998

  • Sarhadi P, Noei AR, Khosravi A (2016) Model reference adaptive PID control with anti-windup compensator for an autonomous underwater vehicle. Robot Auton Syst 83:87–93

    Article  Google Scholar 

  • Scherer CW (1990) The Riccati inequality and state-space H-infinity-optimal control. Julius Maximilians University Würzburg, Germany

    Google Scholar 

  • Shadi R, Liavoli FB, Fakharian A (2021). Nonlinear sub-optimal controller for ebola virus disease: state-dependent riccati equation approach. IEEE, pp 1–6

  • Shi Z, Zhao L (2017) Robust model reference adaptive control based on linear matrix inequality. Aerosp Sci Technol 66:152–159

    Article  Google Scholar 

  • Siddique AB, Munsi MS, Sarker SK, Das SK, Islam MR (2019) Voltage and current control augmentation of islanded microgrid using multifunction model reference modified adaptive PID controller. Int J Electr Power Energy Syst 113:492–501

    Article  Google Scholar 

  • Subramanian RG, Elumalai VK, Karuppusamy S, Canchi VK (2017) Uniform ultimate bounded robust model reference adaptive PID control scheme for visual servoing. J Franklin Inst 354(4):1741–1758

    Article  MathSciNet  Google Scholar 

  • Xie J, Yang D, Zhao J (2019) Composite anti-disturbance model reference adaptive control for switched systems. Inf Sci 485:71–86

    Article  MathSciNet  Google Scholar 

  • Xie J, Zhao J (2018) H-infinity model reference adaptive control for switched systems based on the switched closed-loop reference model. Nonlinear Anal Hybrid Syst 27:92–106

    Article  MathSciNet  Google Scholar 

  • Xie X, Wu Z, Wang Q (2004) Performance analysis in robust model reference adaptive control with unknown high frequency gain. In: Fifth world congress on intelligent control and automation (IEEE Cat. No. 04EX788), pp 511–514. IEEE

  • Yau H-T, Chen C-L (2006) Chattering-free fuzzy sliding-mode control strategy for uncertain chaotic systems. Chaos Solitons Fract 30(3):709–718

    Article  Google Scholar 

  • Yucelen T, Haddad WM (2012) Low-frequency learning and fast adaptation in model reference adaptive control. IEEE Trans Autom Control 58(4):1080–1085

    Article  MathSciNet  Google Scholar 

  • Zhang D, Wei B (2017) A review on model reference adaptive control of robotic manipulators. Annu Rev Control 43:188–198

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Fakharian.

Appendix

Appendix

More details about the proof of stability of the Lyapunov function in Theorem 1 and the procedure of obtaining (21) from (20) is as following:

$$\begin{aligned} {\dot{V}}\left( e\left( t \right) ,{\tilde{\theta }}\left( t \right) \right)&={{e}^{T}}\left( t \right) \left( A_{m}^{T}P+P{{A}_{m}} \right) e\left( t \right) \nonumber \\&\quad -2{{e}^{T}}\left( t \right) PB\left( x\left( t \right) \right) {{{{\tilde{\theta }}}}^{T}}\left( t \right) \varphi \left( x\left( t \right) \right) \nonumber \\&\quad +2trace\left( {{{\dot{{\tilde{\theta }}}}}^{T}}\left( t \right) {{\varSigma }^{-1}}{\tilde{\theta }}\left( t \right) \right) \end{aligned}$$
(41)

according to proposition 5 the derivative of \(\theta\) is equal to zero, so we have:

$$\begin{aligned} {\tilde{\theta }}\left( t \right)&={\hat{\theta }}\left( t \right) -\theta \rightarrow \dot{{\tilde{\theta }}}\left( t \right) =\dot{{\hat{\theta }}}\left( t \right) \rightarrow \dot{{\tilde{\theta }}}\left( t \right) \nonumber \\&=\varSigma \varphi \left( x\left( t \right) \right) {{e}^{T}}\left( t \right) PB\left( x\left( t \right) \right) \end{aligned}$$
(42)

also by considering (43) and (44) corresponding (13) and (16)

$$\begin{aligned}&\dot{{\hat{\theta }}}\left( t \right) =\varSigma \varphi \left( x\left( t \right) \right) {{e}^{T}}\left( t \right) PB\left( x\left( t \right) \right) \end{aligned}$$
(43)
$$\begin{aligned}&A_{m}^{T}P+P{{A}_{m}}=-Q \end{aligned}$$
(44)

and the fact that \(trace\left( x{{y}^{T}} \right) ={{x}^{T}}y\), we would have

$$\begin{aligned} \begin{aligned}&2trace\left( {{{\dot{{\tilde{\theta }}}}}^{T}}\left( t \right) {{\varSigma }^{-1}}{\tilde{\theta }}\left( t \right) \right) \\&\quad =2trace\left( {{{\dot{{\hat{\theta }}}}}^{T}}\left( t \right) {{\varSigma }^{-1}}{\tilde{\theta }}\left( t \right) \right) \\&\quad = 2trace\left( {{\left[ \varSigma \varphi \left( x\left( t \right) \right) {{e}^{T}}\left( t \right) PB\left( x\left( t \right) \right) \right] }^{T}}{{\varSigma }^{-1}}{\tilde{\theta }}\left( t \right) \right) \\&\quad = 2trace\left( {{B}^{T}}\left( x\left( t \right) \right) {{P}^{T}}e\left( t \right) {{\varphi }^{T}}\left( x\left( t \right) \right) {{\varSigma }^{T}}{{\varSigma }^{-1}}{\tilde{\theta }}\left( t \right) \right) \\&\quad = 2trace\left( {{B}^{T}}\left( x\left( t \right) \right) {{P}^{T}}e\left( t \right) {{\varphi }^{T}}\left( x\left( t \right) \right) {\tilde{\theta }}\left( t \right) \right) \\&\qquad \xrightarrow [{{\varphi }^{T}}\left( x\left( t \right) \right) {\tilde{\theta }}\left( t \right) ={{y}^{T}}]{{{B}^{T}}\left( x\left( t \right) \right) {{P}^{T}}e\left( t \right) =x} \\&\quad =2{{e}^{T}}\left( t \right) PB\left( x\left( t \right) \right) {{{{\tilde{\theta }}}}^{T}}\left( t \right) \varphi \left( x\left( t \right) \right) \\ \end{aligned} \end{aligned}$$
(45)

Finally

$$\begin{aligned} \begin{aligned}&\dot{V}\left( e\left( t \right) ,{\tilde{\theta }}\left( t \right) \right) \\&\quad =-{{e}^{T}}\left( t \right) Qe\left( t \right) -2{{e}^{T}}\left( t \right) PB\left( x\left( t \right) \right) {{{{\tilde{\theta }}}}^{T}}\left( t \right) \varphi \left( x\left( t \right) \right) \\&\qquad +2{{e}^{T}}\left( t \right) PB\left( x\left( t \right) \right) {{{{\tilde{\theta }}}}^{T}}\left( t \right) \varphi \left( x\left( t \right) \right) \\&\quad =-{{e}^{T}}\left( t \right) Qe\left( t \right) \prec 0\\ \end{aligned} \end{aligned}$$
(46)

Also, the same procedure could be followed for the derivative of Lyapunov function (30) in Theorem 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamalifar, A., Menhaj, M.B., Monfared, M.N. et al. Design of Robust Model Reference Adaptive Controller for a Wider Class of Nonlinear Systems. Iran J Sci Technol Trans Electr Eng 46, 127–139 (2022). https://doi.org/10.1007/s40998-021-00451-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-021-00451-8

Keywords

Navigation