Skip to main content
Log in

Analytical Solution of Cracked Functionally Graded Magneto-Electro-Elastic Half-Plane Under Impact Loading

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

The distributed dislocation technique is developed for the transient analysis of functionally graded magneto-electro-elastic half-plane where cracks are parallel/perpendicular with respect to the half-plane boundary. Laplace and Fourier transforms are employed to solve the governing equations leading to a system of Cauchy singular integral equations on the Laplace transform domain. The dynamic stress intensity factor history can be calculated by numerical Laplace transform inversion of the solution of the integral equations. Numerical results are provided to show the effect of the length and position of the cracks, geometry of interacting between the cracks, the magnitude and direction of magnetoelectrical loads and functionally graded constant on the resulting DSIFs. Also, the obtained solutions can be used as a Green’s function to solve dynamic problems involving multiple parallel finite cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Afshar H, Bagheri R (2018) Several embedded cracks in a functionally graded piezoelectric strip under dynamic loading. Comput Math Appl 76:534–550

    Article  MathSciNet  Google Scholar 

  • Bagheri R (2017) Several horizontal cracks in a piezoelectric half-plane under transient loading. Arch Appl Mech 87:1979–1992

    Article  Google Scholar 

  • Bagheri R, Ayatollahi M, Mousavi SM (2015) Stress analysis of a functionally graded magneto-electro-elastic strip with multiple moving cracks. Math Mech Solids 22:304–323

    Article  MathSciNet  Google Scholar 

  • Bleustein JL (1968) A new surface wave in piezoelectric materials. Appl Phys Lett 13:412–413

    Article  Google Scholar 

  • Chen ZT (2006) Dynamic fracture mechanics study of an electrically impermeable mode III crack in a transversely isotropic piezoelectric material under pure electric load. Int J Fract 141:395–402

    Article  Google Scholar 

  • Chen X (2009) Dynamic crack propagation in a magneto-electro-elastic solid subjected to mixed loads: transient Mode-III problem. Int J Solids Struct 46:4025–4037

    Article  Google Scholar 

  • Cohen AM (2007) Numerical methods for Laplace transform inversion. Springer, Berlin

    MATH  Google Scholar 

  • Erdogan F, Gupta GD, Cook TS (1973) Numerical solution of integral equations. In: Sih GC (ed) Methods of analysis and solution of crack problems. Noordhoof, Leyden (Holland), pp 368–425

    Chapter  Google Scholar 

  • Ershad H, Bagheri R, Noroozi M (2018) Transient response of cracked nonhomogeneous substrate with piezoelectric coating by dislocation method. Math Mech Solids 23:1–12

    Article  MathSciNet  Google Scholar 

  • Fotuhi AR, Fariborz SJ (2006) Anti-plane analysis of a functionally graded strip with multiple cracks. Int J Solids Struct 43:1239–1252

    Article  Google Scholar 

  • Fu J, Hu K, Chen Z, Chen L, Qian L (2013) A moving crack propagating in a functionally graded magnetoelectroelastic strip under different crack face conditions. Theor Appl Fract Mech 66:16–25

    Article  Google Scholar 

  • García-Sánchez F, Zhang Ch, Sáez A (2008) 2-D transient dynamic analysis of cracked piezoelectric solids by a time-domain BEM. Comput Method Appl Mech Eng 197:3108–3121

    Article  Google Scholar 

  • Korsunsky AM, Hills DA (1996) The solution of crack problems by using distributed strain nuclei. Proc Inst Mech Eng Part C J Mech Eng Sci 210:23–31

    Article  Google Scholar 

  • Kuznetsov A (2013) On the convergence of the Gaver–Stehfest algorithm. SIAM J Numer Anal 51:2984–2998

    Article  MathSciNet  Google Scholar 

  • Li XF (2001) Transient response of a piezoelectric material with a semi-infinite mode-III crack under impact loads. Int J Fract 111:119–130

    Article  Google Scholar 

  • Li XF (2005) Dynamic analysis of a cracked magnetoelectroelastic medium under antiplane mechanical and inplane electric and magnetic impacts. Int J Solids Struct 42:3185–3205

    Article  Google Scholar 

  • Li XF, Fan TY (2002) Transient analysis of a piezoelectric strip with a permeable crack under anti-plane impact loads. Int J Eng Sci 40:131–143

    Article  Google Scholar 

  • Liu P, Yu T, Bui TQ, Zhang C, Xu Y, Lim CW (2014) Transient thermal shock fracture analysis of functionally graded piezoelectric materials by the extended finite element method. Int J Solids Struct 51:2167–2182

    Article  Google Scholar 

  • Mousavi SM, Paavola J (2013) Analysis of functionally graded magneto-electro-elastic layer with multiple cracks. Theor Appl Fract Mech 66:1–8

    Article  Google Scholar 

  • Rokne J, Singh BM, Dhaliwal RS (2012) Moving anti-plane shear crack in a piezoelectric layer bonded to dissimilar elastic infinite spaces. Eur J Mech A Solid 31:47–53

    Article  MathSciNet  Google Scholar 

  • Sharma K, Bui TQ, Bhargava RR, Yu T, Lei J, Hirose S (2016) Numerical studies of an array of equidistant semi-permeable inclined cracks in 2-D piezoelectric strip using distributed dislocation method. Int J Solids Struct 80:137–145

    Article  Google Scholar 

  • Su RKL, Feng WJ, Liu J (2007) Transient response of interface cracks between dissimilar magneto-electro-elastic strips under out-of-plane mechanical and in-plane magneto-electrical impact loads. Compos Struct 78:119–128

    Article  Google Scholar 

  • Tupholme GE (2012) Magnetoelectroelastic media containing a row of moving shear cracks. Mech Res Commun 45:48–53

    Article  Google Scholar 

  • Vafa JP, Baghestani AM, Fariborz SJ (2015) Transient screw dislocation in exponentially graded FG layers. Arch Appl Mech 85:1–11

    Article  Google Scholar 

  • Wang X, Yu S (2000) Transient response of a crack in piezoelectric strip subjected to the mechanical and electrical impacts: mode-III problem. Int J Solids Struct 37:5795–5808

    Article  Google Scholar 

  • Weertman J (1996) Dislocation based fracture mechanics. World Scientifc, Singapore

    Book  Google Scholar 

  • Yong HD, Zhou YH (2007) Transient response of a cracked magnetoelectroelastic strip under anti-plane impact. Int J Solids Struct 44:705–717

    Article  Google Scholar 

  • Zhang Ch, Sladek J, Sladek V (2003) Effects of material gradients on transient dynamic mode-III stress intensity factors in a FGM. Int J Solids Struct 40:5251–5270

    Article  Google Scholar 

  • Zhong XC, Li XF, Lee KY (2009) Transient response of a cracked magnetoelectric material under the action of in-plane sudden impacts. Comput Mater Sci 45:905–911

    Article  Google Scholar 

  • Zhou ZG, Wu LZ, Wang B (2005) The behavior of a crack in functionally graded piezoelectric/piezomagnetic materials under anti-plane shear loading. Arch Appl Mech 74:526–535

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bagheri.

Appendix

Appendix

The unknown coefficients in (12) may be determined as:

$$A_{1} (\omega ,s) = - \frac{{b_{z} (s)[\pi \delta (\omega ) - {i \mathord{\left/ {\vphantom {i \omega }} \right. \kern-0pt} \omega }]}}{{2\gamma_{1} }}(\lambda - \gamma_{1} ){\text{e}}^{{ - 2\gamma_{1} h}}$$
$$A_{2} (\omega ,s) = \frac{{b_{z} (s)[\pi \delta (\omega ) - {i \mathord{\left/ {\vphantom {i \omega }} \right. \kern-0pt} \omega }]}}{{2\gamma_{1} }}(\lambda + \gamma_{1} )$$
$$A_{3} (\omega ,s) = - \frac{{b_{z} (s)[\pi \delta (\omega ) - {i \mathord{\left/ {\vphantom {i \omega }} \right. \kern-0pt} \omega }]}}{{2\gamma_{1} }}(\lambda - \gamma_{1} )({\text{e}}^{{ - 2\gamma_{1} h}} - 1)$$
$$B_{1} (\omega ,s) = - \frac{{[b_{\phi } (s) - \alpha_{2} b_{z} (s)][\pi \delta (\omega ) - {i \mathord{\left/ {\vphantom {i \omega }} \right. \kern-0pt} \omega }]}}{{2\gamma_{2} }}(\lambda - \gamma_{2} ){\text{e}}^{{ - 2\gamma_{2} h}}$$
$$B_{2} (\omega ,s) = \frac{{[b_{\phi } (s) - \alpha_{2} b_{z} (s)][\pi \delta (\omega ) - {i \mathord{\left/ {\vphantom {i \omega }} \right. \kern-0pt} \omega }]}}{{2\gamma_{2} }}(\lambda + \gamma_{2} )$$
$$B_{3} (\omega ,s) = - \frac{{[b_{\phi } (s) - \alpha_{2} b_{z} (s)][\pi \delta (\omega ) - {i \mathord{\left/ {\vphantom {i \omega }} \right. \kern-0pt} \omega }]}}{{2\gamma_{2} }}(\lambda - \gamma_{2} )({\text{e}}^{{ - 2\gamma_{2} h}} - 1)$$
$$C_{1} (\omega ,s) = - \frac{{[b_{\psi } (s) - \alpha_{3} b_{z} (s)][\pi \delta (\omega ) - {i \mathord{\left/ {\vphantom {i \omega }} \right. \kern-0pt} \omega }]}}{{2\gamma_{2} }}(\lambda - \gamma_{2} ){\text{e}}^{{ - 2\gamma_{2} h}}$$
$$C_{2} (\omega ,s) = \frac{{[b_{\psi } (s) - \alpha_{3} b_{z} (s)][\pi \delta (\omega ) - {i \mathord{\left/ {\vphantom {i \omega }} \right. \kern-0pt} \omega }]}}{{2\gamma_{2} }}(\lambda + \gamma_{2} )$$
$$C_{3} (\omega ,s) = - \frac{{[b_{\psi } (s) - \alpha_{3} b_{z} (s)][\pi \delta (\omega ) - {i \mathord{\left/ {\vphantom {i \omega }} \right. \kern-0pt} \omega }]}}{{2\gamma_{2} }}(\lambda - \gamma_{2} )({\text{e}}^{{ - 2\gamma_{2} h}} - 1)$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, R. Analytical Solution of Cracked Functionally Graded Magneto-Electro-Elastic Half-Plane Under Impact Loading. Iran J Sci Technol Trans Mech Eng 45, 911–925 (2021). https://doi.org/10.1007/s40997-019-00331-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-019-00331-x

Keywords

Navigation