Skip to main content
Log in

Elastoplastic Behavior of Unidirectional Hybrid Composites Containing SiO2 Nanoparticles Under Transverse Tension

  • Research paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

This paper investigates the overall elastoplastic behavior of unidirectional fiber-reinforced polymer composites containing silica (SiO2) nanoparticles under tensile transverse uniaxial loading using a multi-procedure micromechanics-based ensemble volume-averaged method. In the first step, the elastoplastic behavior of a nanocomposite consisting of SiO2 nanoparticles embedded in a polymer matrix is modeled. The formation of the interphase region between the nanoparticles and the polymer is taken into account in the simulation. In the second step, considering the nanocomposite as the matrix and fiber as the reinforcement, the elastoplastic behavior of nanoparticle-fiber-reinforced hybrid composites is obtained. The effects of volume fraction and size of nanoparticles, interphase characteristics and fiber volume fraction on the elastoplastic stress–strain curves are examined. The results clearly highlight the benefits of SiO2 nanoparticles into the fibrous composites from a structural point of view. The elastic modulus and strength of fibrous composites can be significantly enhanced with adding nanoparticles. It is found that the interphase region plays a crucial role in the overall mechanical behavior of the hybrid composites. Moreover, the mechanical properties of hybrid composites are highly improved by decreasing the nanoparticle diameter. Finally, the elastoplastic behavior of nanoparticle-fiber-reinforced hybrid composites under transverse/transverse biaxial tension is provided. Comparisons between the predictions and existing experimental data are conducted to verify the predictive capability of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agwa MA, Taha I, Megahed M (2017) Experimental and analytical investigation of water diffusion process in nano-carbon/alumina/silica filled epoxy nanocomposites. Int J Mech Mater Des 13(4):607–615

    Google Scholar 

  • Alian AR, Kundalwal SI, Meguid SA (2015a) Multiscale modeling of carbon nanotube epoxy composites. Polymer 70:149–160

    Google Scholar 

  • Alian AR, Kundalwal SI, Meguid SA (2015b) Interfacial and mechanical properties of epoxy nanocomposites using different multiscale modeling schemes. Compos Struct 131:545–555

    Google Scholar 

  • Ansari R, Hassanzadeh Aghdam MK (2016a) Thermo-mechanical properties of polymer nanocomposites reinforced with randomly distributed silica nanoparticles-micromechanical analysis. Transp Phenom Nano Micro Scales 4(2):1–8

    Google Scholar 

  • Ansari R, Hassanzadeh Aghdam MK (2016b) Micromechanics-based viscoelastic analysis of carbon nanotube-reinforced composites subjected to uniaxial and biaxial loading. Compos B Eng 90:512–522

    Google Scholar 

  • Ansari R, Hassanzadeh Aghdam MK (2016c) Micromechanical investigation of creep-recovery behavior of carbon nanotube-reinforced polymer nanocomposites. Int J Mech Sci 115:45–55

    Google Scholar 

  • Ansari R, Hassanzadeh-Aghdam MK (2017) Micromechanical characterizing elastic, thermoelastic and viscoelastic properties of functionally graded carbon nanotube reinforced polymer nanocomposites. Meccanica 52(7):1625–1640

    Google Scholar 

  • Ansari R, Hassanzadeh Aghdam MK, Darvizeh A (2016) On elastic modulus and biaxial initial yield surface of carbon nanotube-reinforced aluminum nanocomposites. Mech Mater 101:14–26

    Google Scholar 

  • Banerjee S, Sankar BV (2014) Mechanical properties of hybrid composites using finite element method based micromechanics. Compos B Eng 58:318–327

    Google Scholar 

  • Baxter SC, Robinson CT (2011) Pseudo-percolation: critical volume fractions and mechanical percolation in polymer nanocomposites. Compos Sci Technol 71(10):1273–1279

    Google Scholar 

  • Beicha D, Kanit T, Brunet Y, Imad A, El Moumen A, Khelfaoui Y (2016) Effective transverse elastic properties of unidirectional fiber reinforced composites. Mech Mater 102:47–53

    Google Scholar 

  • Bondioli F, Cannillo V, Fabbri E, Messori M (2005) Epoxy-silica nanocomposites: preparation, experimental characterization, and modeling. J Appl Polym Sci 97(6):2382–2386

    Google Scholar 

  • Boutaleb S, Zaïri F, Mesbah A, Naït-Abdelaziz M, Gloaguen JM, Boukharouba T, Lefebvre JM (2009) Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites. Int J Solids Struct 46(7):1716–1726

    MATH  Google Scholar 

  • Cannillo V, Bondioli F, Lusvarghi L, Montorsi M, Avella M, Errico ME, Malinconico M (2006) Modeling of ceramic particles filled polymer–matrix nanocomposites. Compos Sci Technol 66(7):1030–1037

    Google Scholar 

  • Carolan D, Ivankovic A, Kinloch AJ, Sprenger S, Taylor AC (2017) Toughened carbon fibre-reinforced polymer composites with nanoparticle-modified epoxy matrices. J Mater Sci 52(3):1767–1788

    Google Scholar 

  • Dhala S, Ray MC (2015) Micromechanics of piezoelectric fuzzy fiber-reinforced composite. Mech Mater 81:1–17

    Google Scholar 

  • Duan HL, Wang J, Huang ZP, Karihaloo BL (2005, October) Eshelby formalism for nano-inhomogeneities. In Proceedings of the royal society of London a: mathematical, physical and engineering sciences, vol 461, no. 2062, pp 3335–3353. The Royal Society

  • Duodu EA, Gu J, Ding W, Shang Z, Tang S (2018) Comparison of ballistic impact behavior of carbon fiber/epoxy composite and steel metal structures. Iran J Sci Technol Trans Mech Eng 42(1):13–22

    Google Scholar 

  • Gang D, Chilan C, Haobin T, Zhenhua L, Dingzhong Z, Kang Q (2015) The research on the effect of SiO2 and CF on the tensile and tribological properties of PI composite. Proc Inst Mech Eng Part J J Eng Tribol 229(12):1513–1518

    Google Scholar 

  • Gao SL, Mäder E (2002) Characterisation of interphase nanoscale property variations in glass fibre reinforced polypropylene and epoxy resin composites. Compos A Appl Sci Manuf 33(4):559–576

    Google Scholar 

  • Haghgoo M, Hassanzadeh-Aghdam MK, Ansari R (2018) Effect of piezoelectric interphase on the effective magneto-electro-elastic properties of three-phase smart composites: a micromechanical study. Mech Adv Mater Struct 14:1–16

    Google Scholar 

  • Hassanzadeh-Aghdam MK, Ansari R (2016) A micromechanical model for effective thermo-elastic properties of nanocomposites with graded properties of interphase. Iran J Sci Technol Trans Mech Eng. https://doi.org/10.1007/s40997-016-0045-1

    Article  Google Scholar 

  • Hassanzadeh-Aghdam MK, Ansari R, Mahmoodi MJ (2018) Micromechanical estimation of biaxial thermomechanical responses of hybrid fiber-reinforced metal matrix nanocomposites containing carbon nanotubes. Mech Mater 119(2018):1–15

    Google Scholar 

  • Hine PJ, Lusti HR, Gusev AA (2002) Numerical simulation of the effects of volume fraction, aspect ratio and fibre length distribution on the elastic and thermoelastic properties of short fibre composites. Compos Sci Technol 62(10):1445–1453

    Google Scholar 

  • Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: polymer–matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511–1575

    Google Scholar 

  • Ju JW, Chen TM (1994a) Micromechanics and effective elastoplastic behavior of two-phase metal matrix composites. J Eng Mater Technol 116:310

    Google Scholar 

  • Ju JW, Chen TM (1994b) Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities. Acta Mech 103(1):103–121

    MathSciNet  MATH  Google Scholar 

  • Ju JW, Zhang XD (1998) Micromechanics and effective transverse elastic moduli of composites with randomly located aligned circular fibers. Int J Solids Struct 35(9–10):941–960

    MATH  Google Scholar 

  • Ju JW, Zhang XD (2001) Effective elastoplastic behavior of ductile matrix composites containing randomly located aligned circular fibers. Int J Solids Struct 38(22):4045–4069

    MATH  Google Scholar 

  • Jumahat A, Soutis C, Jones FR, Hodzic A (2010) Effect of silica nanoparticles on compressive properties of an epoxy polymer. J Mater Sci 45(21):5973–5983

    Google Scholar 

  • Kim BR, Pyo SH, Lemaire G, Lee HK (2011) Multiscale approach to predict the effective elastic behavior of nanoparticle-reinforced polymer composites. Interact Multiscale Mech 4(3):173–185

    Google Scholar 

  • Korkiakoski S, Sarlin E, Suihkonen R, Saarela O (2017) Influence of reinforcement positioning on tension-tension fatigue performance of quasi-unidirectional GFRP laminates made of stitched fabrics. Compos B Eng 112:38–48

    Google Scholar 

  • Kundalwal SI, Ray MC (2012) Effective properties of a novel continuous fuzzy-fiber reinforced composite using the method of cells and the finite element method. Eur J Mech A Solids 36:191–203

    Google Scholar 

  • Kundalwal SI, Ray MC (2014) Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite. Compos B Eng 57:199–209

    Google Scholar 

  • Landowski M, Strugała G, Budzik M, Imielińska K (2017) Impact damage in SiO2 nanoparticle enhanced epoxy–carbon fibre composites. Compos B Eng 113:91–99

    Google Scholar 

  • Lee HK, Kim BR (2007) Numerical characterization of compressive response and damage evolution in laminated plates containing a cutout. Compos Sci Technol 67(11):2221–2230

    Google Scholar 

  • Lee HK, Shin DK (2004) A computational investigation of crack evolution and interactions of microcracks and particles in particle-reinforced brittle composites. Compos Struct 64(3):419–431

    Google Scholar 

  • Lin J, Wu X, Zheng C, Zhang P, Huang B, Guo N, Jin L (2014) Synthesis and properties of epoxy-polyurethane/silica nanocomposites by a novel sol method and in situ solution polymerization route. Appl Surf Sci 303:67–75

    Google Scholar 

  • Liu HT, Sun LZ (2005) Multi-scale modeling of elastoplastic deformation and strengthening mechanisms in aluminum-based amorphous nanocomposites. Acta Mater 53(9):2693–2701

    Google Scholar 

  • Liu HT, Sun LZ (2008) A micromechanics-based elastoplastic model for amorphous composites with nanoparticle interactions. J Appl Mech 75(3):031009

    Google Scholar 

  • Manjunatha CM, Taylor AC, Kinloch AJ, Sprenger S (2010) The tensile fatigue behaviour of a silica nanoparticle-modified glass fibre reinforced epoxy composite. Compos Sci Technol 70(1):193–199

    Google Scholar 

  • Mirzapour A, Asadollahi MH, Baghshaei S, Akbari M (2014) Effect of nanosilica on the microstructure, thermal properties and bending strength of nanosilica modified carbon fiber/phenolic nanocomposite. Compos A Appl Sci Manuf 63:159–167

    Google Scholar 

  • Miyagawa H, Mase T, Sato C, Drown E, Drzal LT, Ikegami K (2006) Comparison of experimental and theoretical transverse elastic modulus of carbon fibers. Carbon 44(10):2002–2008

    Google Scholar 

  • Mortazavi B, Baniassadi M, Bardon J, Ahzi S (2013a) Modeling of two-phase random composite materials by finite element, Mori-Tanaka and strong contrast methods. Compos B Eng 45(1):1117–1125

    Google Scholar 

  • Mortazavi B, Bardon J, Ahzi S (2013b) Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study. Comput Mater Sci 69:100–106

    Google Scholar 

  • Naito K (2013) Tensile properties of polyacrylonitrile-and pitch-based hybrid carbon fiber/polyimide composites with some nanoparticles in the matrix. J Mater Sci 48(12):4163–4176

    Google Scholar 

  • Naito K, Yang JM, Kagawa Y (2011) The effect of nanoparticle inclusion on the tensile and mode I fracture properties of polyimides. Mater Sci Eng A 530:357–366

    Google Scholar 

  • Ngah SA, Taylor AC (2016) Toughening performance of glass fibre composites with core–shell rubber and silica nanoparticle modified matrices. Compos A Appl Sci Manuf 80:292–303

    Google Scholar 

  • Odegard GM, Clancy TC, Gates TS (2005) Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46(2):553–562

    Google Scholar 

  • Pantano A, Cappello F (2008) Numerical model for composite material with polymer matrix reinforced by carbon nanotubes. Meccanica 43(2):263–270

    MATH  Google Scholar 

  • Parida SK, Pradhan AK (2016) Effect of material anisotropy on delamination damage in adhesive bonded lap shear joints made with curved laminated FRP composite panels. Iran J Sci Technol Trans Mech Eng 40(4):275–287

    Google Scholar 

  • Qu J, Cherkaoui M (2006) Fundamentals of micromechanics of solids. Wiley, Hoboken, pp 226–240

    Google Scholar 

  • Rezvani MB, Atai M, Hamze F, Hajrezai R (2016) The effect of silica nanoparticles on the mechanical properties of fiber-reinforced composite resins. J Dent Res Dent Clin Dent Prospects 10(2):112

    Google Scholar 

  • Rosso P, Ye L, Friedrich K, Sprenger S (2006) A toughened epoxy resin by silica nanoparticle reinforcement. J Appl Polym Sci 100(3):1849–1855

    Google Scholar 

  • Schmidt D, Shah D, Giannelis EP (2002) New advances in polymer/layered silicate nanocomposites. Curr Opin Solid State Mater Sci 6(3):205–212

    Google Scholar 

  • Snipes JS, Robinson CT, Baxter SC (2011) Effects of scale and interface on the three-dimensional micromechanics of polymer nanocomposites. J Compos Mater 45(24):2537–2546

    Google Scholar 

  • Sprenger S (2014) Fiber-reinforced composites based on epoxy resins modified with elastomers and surface-modified silica nanoparticles. J Mater Sci 49(6):2391–2402

    Google Scholar 

  • Sprenger S (2015) Improving mechanical properties of fiber-reinforced composites based on epoxy resins containing industrial surface-modified silica nanoparticles: review and outlook. J Compos Mater 49(1):53–63

    MathSciNet  Google Scholar 

  • Sprenger S, Kothmann MH, Altstaedt V (2014) Carbon fiber-reinforced composites using an epoxy resin matrix modified with reactive liquid rubber and silica nanoparticles. Compos Sci Technol 105:86–95

    Google Scholar 

  • Sasaki S, Nishi S (1996) Synthesis of fluorinated polymides. In: Ghosh MK, Mittal KL (eds) Polyimides: fundamentals and applications. Marcel Dekker, New York, pp 71–120

    Google Scholar 

  • Sun L, Gibson RF, Gordaninejad F (2011) Multiscale analysis of stiffness and fracture of nanoparticle-reinforced composites using micromechanics and global-local finite element models. Eng Fract Mech 78(15):2645–2662

    Google Scholar 

  • Tang Y, Ye L, Zhang D, Deng S (2011) Characterization of transverse tensile, interlaminar shear and interlaminate fracture in CF/EP laminates with 10wt% and 20wt% silica nanoparticles in matrix resins. Compos A Appl Sci Manuf 42(12):1943–1950

    Google Scholar 

  • Tourani H, Molazemhosseini A, Khavandi A, Mirdamadi S, Shokrgozar MA, Mehrjoo M (2013) Effects of fibers and nanoparticles reinforcements on the mechanical and biological properties of hybrid composite polyetheretherketone/short carbon fiber/Nano-SiO2. Polym Compos 34(11):1961–1969

    Google Scholar 

  • Tsai JL, Huang BH, Cheng YL (2009) Enhancing fracture toughness of glass/epoxy composites by using rubber particles together with silica nanoparticles. J Compos Mater 43(25):3107–3123

    Google Scholar 

  • Tsai JL, Hsiao H, Cheng YL (2010a) Investigating mechanical behaviors of silica nanoparticle reinforced composites. J Compos Mater 44(4):505–524

    Google Scholar 

  • Tsai JL, Tzeng SH, Chiu YT (2010b) Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Compos B Eng 41(1):106–115

    Google Scholar 

  • Uddin MF, Sun CT (2008) Strength of unidirectional glass/epoxy composite with silica nanoparticle-enhanced matrix. Compos Sci Technol 68(7):1637–1643

    Google Scholar 

  • Vieira LMG, Santos JCD, Panzera TH, Christoforo AL, Mano V, Campos Rubio JC, Scarpa F (2016) Hybrid composites based on sisal fibers and silica nanoparticles. Polym Compos 39(1):146–156

    Google Scholar 

  • Wang ZD, Lu JJ, Li Y, Fu SY, Jiang SQ, Zhao XX (2005) Low temperature properties of PI/SiO2 nanocomposite films. Mater Sci Eng B 123(3):216–221

    Google Scholar 

  • Yanase K, Moriyama S, Ju JW (2013) Effects of CNT waviness on the effective elastic responses of CNT-reinforced polymer composites. Acta Mech 224(7):1351

    Google Scholar 

  • Zeng Y, Liu HY, Mai YW, Du XS (2012) Improving interlaminar fracture toughness of carbon fibre/epoxy laminates by incorporation of nano-particles. Compos B Eng 43(1):90–94

    Google Scholar 

  • Zhang H, Zhang Z, Friedrich K, Eger C (2006) Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater 54(7):1833–1842

    Google Scholar 

Download references

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kazem Hassanzadeh-Aghdam.

Ethics declarations

Conflict of interest

The author(s) declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanzadeh-Aghdam, M.K., Hasanzadeh, M. & Ansari, R. Elastoplastic Behavior of Unidirectional Hybrid Composites Containing SiO2 Nanoparticles Under Transverse Tension. Iran J Sci Technol Trans Mech Eng 44, 299–312 (2020). https://doi.org/10.1007/s40997-018-0265-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-018-0265-7

Keywords

Navigation