Skip to main content
Log in

Overall thermal conductivity of unidirectional hybrid polymer nanocomposites containing SiO2 nanoparticles

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

A physics-based nested hierarchical approach is established to investigate thermal conducting behavior of micro-filler (in the form of particle, short and long fiber)/nanoparticle-reinforced polymer hybrid nanocomposites. An effort is made to develop a unit cell-based micromechanical model predicting the thermal conductivities of general composite systems, including microscale filler-reinforced composites, nanoparticle-reinforced nanocomposites and microscale filler/nanoparticle-reinforced hybrid nanocomposites. The role of the nanoparticle/polymer interfacial thermal resistance is also considered in the analysis. The developed model presents a reasonable behavior compared with available experiments and other modeling methods for the thermal properties of composites and nanocomposites. The results are provided for two types of hybrid nanocomposites, including carbon micro-filler/silica (SiO2) nanoparticle-reinforced epoxy and glass micro-filler/SiO2 nanoparticle-reinforced epoxy systems. It is found that transverse thermal conducting behavior of general fibrous composites is significantly affected by adding the nanoparticles. However, due to the dominated role of the carbon fiber in the longitudinal direction, the longitudinal thermal conductivity of carbon fiber-reinforced composites is not influenced by the nanoparticles. Also, the thermal conductivities of both randomly oriented short fiber-reinforced composite and particulate composite systems can be improved with the addition of the nanoparticles. The obtained results could be useful to guide the design of hybrid nanocomposites with optimal thermal conductivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ansari, R., Hassanzadeh-Aghdam, M.K.: Micromechanical investigation of creep-recovery behavior of carbon nanotube-reinforced polymer nanocomposites. Int. J. Mech. Sci. 115, 45–55 (2016)

    Article  Google Scholar 

  • Ansari, R., Hassanzadeh-Aghdam, M.K.: Micromechanical characterizing elastic, thermoelastic and viscoelastic properties of functionally graded carbon nanotube reinforced polymer nanocomposites. Meccanica 52(7), 1625–1640 (2017)

    Article  Google Scholar 

  • Ansari, R., Hassanzadeh-Aghdam, M.K., Darvizeh, A.: On elastic modulus and biaxial initial yield surface of carbon nanotube-reinforced aluminum nanocomposites. Mech. Mater. 101, 14–26 (2016)

    Article  Google Scholar 

  • Beicha, D., Kanit, T., Brunet, Y., Imad, A., El Moumen, A., Khelfaoui, Y.: Effective transverse elastic properties of unidirectional fiber reinforced composites. Mech. Mater. 102, 47–53 (2016)

    Article  Google Scholar 

  • Cairo, C.A.A., Florian, M., Graca, M.L.A., Bressiani, J.C.: Kinetic study by TGA of the effect of oxidation inhibitors for carbon–carbon composite. Mater. Sci. Eng. A 358(1), 298–303 (2003)

    Article  Google Scholar 

  • Chen, L., Sun, Y.Y., Xu, H.F., He, S.J., Wei, G.S., Du, X.Z., Lin, J.: Analytic modeling for the anisotropic thermal conductivity of polymer composites containing aligned hexagonal boron nitride. Compos. Sci. Technol. 122, 42–49 (2016)

    Article  Google Scholar 

  • Duong, H.M., Yamamoto, N., Bui, K., Papavassiliou, D.V., Maruyama, S., Wardle, B.L.: Morphology effects on nonisotropic thermal conduction of aligned single-walled and multi-walled carbon nanotubes in polymer nanocomposites. J. Phys. Chem. C 114(19), 8851–8860 (2010)

    Article  Google Scholar 

  • Eslami, Z., Yazdani, F., Mirzapour, M.A.: Thermal and mechanical properties of phenolic-based composites reinforced by carbon fibres and multiwall carbon nanotubes. Compos. Part A Appl. Sci. Manuf. 72, 22–31 (2015)

    Article  Google Scholar 

  • Guthy, C., Du, F., Brand, S., Winey, K.I., Fischer, J.E.: Thermal conductivity of single-walled carbon nanotube/PMMA nanocomposites. J. Heat Transf. 129(8), 1096–1099 (2007)

    Article  Google Scholar 

  • Haggenmueller, R., Guthy, C., Lukes, J.R., Fischer, J.E., Winey, K.I.: Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity. Macromolecules 40(7), 2417–2421 (2007)

    Article  Google Scholar 

  • Han, Z., Fina, A.: Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36(7), 914–944 (2011)

    Article  Google Scholar 

  • Hassanzadeh-Aghdam, M.K., & Ansari, R.: Thermomechanical investigation of unidirectional carbon fiber-polymer hybrid composites containing CNTs. Int. J. Mech. Mater. Des. 1–18 (2018). https://doi.org/10.1007/s10999-018-9418-5

  • Hassanzadeh-Aghdam, M.K., Ansari, R., Darvizeh, A.: Micromechanical modeling of thermal expansion coefficients for unidirectional glass fiber-reinforced polyimide composites containing silica nanoparticles. Compos. Part A Appl. Sci. Manuf. 96, 110–121 (2017)

    Article  Google Scholar 

  • Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J., Jamali, J.: Effect of CNT coating on the overall thermal conductivity of unidirectional polymer hybrid nanocomposites. Int. J. Heat Mass Transf. 124, 190–200 (2018a)

    Article  Google Scholar 

  • Hassanzadeh-Aghdam, M.K., Mahmoodi, M.J., Kazempour, M.R.: The role of thermal residual stress on the yielding behavior of carbon nanotube–aluminum nanocomposites. Int. J. Mech. Mater. Des. 14(2), 263–275 (2018b)

    Article  Google Scholar 

  • Hassanzadeh-Aghdam, M.K., Ansari, R., Darvizeh, A.: Multi-stage micromechanical modeling of effective elastic properties of carbon fiber/carbon nanotube-reinforced polymer hybrid composites. Mech. Adv. Mater. Struct. 1–15 (2018c). https://doi.org/10.1080/15376494.2018.1472336

  • Islam, M.R., Pramila, A.: Thermal conductivity of fiber reinforced composites by the FEM. J. Compos. Mater. 33(18), 1699–1715 (1999)

    Article  Google Scholar 

  • Khoddam, S., Tian, L., Sapanathan, T., Hodgson, P.D., Zarei-Hanzaki, A.: Latest developments in modeling and characterization of joining metal based hybrid materials. Adv. Eng. Mater. (2018). https://doi.org/10.1002/adem.201800048

    Google Scholar 

  • Kim, Y.A., Kamio, S., Tajiri, T., Hayashi, T., Song, S.M., Endo, M., Terrones, M., Dresselhaus, M.S.: Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes. Appl. Phys. Lett. 90(9), 093125 (2007)

    Article  Google Scholar 

  • Kochetov, R., Korobko, A.V., Andritsch, T., Morshuis, P.H.F., Picken, S.J., Smit, J.J.: Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix. J. Phys. D Appl. Phys. 44(39), 395401 (2011)

    Article  Google Scholar 

  • Kumlutas, D., Tavman, I.H.: A numerical and experimental study on thermal conductivity of particle filled polymer composites. J. Thermoplast. Compos. Mater. 19(4), 441–455 (2006)

    Article  Google Scholar 

  • Kundalwal, S.I., Meguid, S.A.: Micromechanics modelling of the effective thermoelastic response of nano-tailored composites. Eur. J. Mech.-A/Solids 53, 241–253 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of regularly staggered carbon fibers embedded in nano-reinforced composites. Eur. J. Mech.-A/Solids 64, 69–84 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Kundalwal, S.I., Ray, M.C.: Micromechanical analysis of fuzzy fiber reinforced composites. Int. J. Mech. Mater. Des. 7(2), 149–166 (2011)

    Article  Google Scholar 

  • Kundalwal, S.I., Ray, M.C.: Shear lag analysis of a novel short fuzzy fiber-reinforced composite. Acta Mech. 225(9), 2621–2643 (2014a)

    Article  MathSciNet  MATH  Google Scholar 

  • Kundalwal, S.I., Ray, M.C.: Estimation of thermal conductivities of a novel fuzzy fiber reinforced composite. Int. J. Therm. Sci. 76, 90–100 (2014b)

    Article  Google Scholar 

  • Kundalwal, S.I., Kumar, R.S., Ray, M.C.: Effective thermal conductivities of a novel fuzzy carbon fiber heat exchanger containing wavy carbon nanotubes. Int. J. Heat Mass Transf. 72, 440–451 (2014)

    Article  Google Scholar 

  • Liang, J.Z.: Estimation of thermal conductivity for polypropylene/hollow glass bead composites. Compos. B Eng. 56, 431–434 (2014)

    Article  Google Scholar 

  • Liu, Y.J., Xu, N., Luo, J.F.: Modeling of interphases in fiber-reinforced composites under transverse loading using the boundary element method. J. Appl. Mech. 67(1), 41–49 (2000)

    Article  MATH  Google Scholar 

  • Mahmoodi, M.J., Maleki, M., Hassanzadeh-Aghdam, M.K.: Static bending and free vibration analysis of hybrid fuzzy fiber reinforced nanocomposite beam-A multiscale modeling. Int. J. Appl. Mech. 10(5), 1850053(1–36) (2018)

    Article  Google Scholar 

  • McIvor, S.D., Darby, M.I., Wostenholm, G.H., Yates, B., Banfield, L., King, R., Webb, A.: Thermal conductivity measurements of some glass fibre-and carbon fibre-reinforced plastics. J. Mater. Sci. 25(7), 3127–3132 (1990)

    Article  Google Scholar 

  • Minnich, A., Chen, G.: Modified effective medium formulation for the thermal conductivity of nanocomposites. Appl. Phys. Lett. 91(7), 073105 (2007)

    Article  Google Scholar 

  • Nayak, R., Tarkes, D.P., Satapathy, A.: A computational and experimental investigation on thermal conductivity of particle reinforced epoxy composites. Comput. Mater. Sci. 48(3), 576–581 (2010)

    Article  Google Scholar 

  • Park, H.J., Badakhsh, A., Im, I.T., Kim, M.S., Park, C.W.: Experimental study on the thermal and mechanical properties of MWCNT/polymer and Cu/polymer composites. Appl. Therm. Eng. 107, 907–917 (2016)

    Article  Google Scholar 

  • Pegorin, F., Pingkarawat, K., Mouritz, A.P.: Controlling the electrical conductivity of fibre-polymer composites using z-pins. Compos. Sci. Technol. 150, 167–173 (2017)

    Article  Google Scholar 

  • Ray, M.C.: A shear lag model of piezoelectric composite reinforced with carbon nanotubes-coated piezoelectric fibers. Int. J. Mech. Mater. Des. 6(2), 147–155 (2010)

    Article  Google Scholar 

  • Shen, M.X., Cui, Y.X., He, J., Zhang, Y.M.: Thermal conductivity model of filled polymer composites. Int. J. Miner. Metall. Mater. 18(5), 623–631 (2011)

    Article  Google Scholar 

  • Sprenger, S.: Improving mechanical properties of fiber-reinforced composites based on epoxy resins containing industrial surface-modified silica nanoparticles: review and outlook. J. Compos. Mater. 49(1), 53–63 (2015)

    Article  MathSciNet  Google Scholar 

  • Sweeting, R.D., Liu, X.L.: Measurement of thermal conductivity for fibre-reinforced composites. Compos. Part A Appl. Sci. Manuf. 35(7), 933–938 (2004)

    Article  Google Scholar 

  • Tang, Y., Ye, L., Zhang, D., Deng, S.: Characterization of transverse tensile, interlaminar shear and interlaminate fracture in CF/EP laminates with 10wt% and 20wt% silica nanoparticles in matrix resins. Compos. Part A Appl. Sci. Manuf. 42(12), 1943–1950 (2011)

    Article  Google Scholar 

  • Tian, L., Anderson, I., Riedemann, T., Russell, A.: Modeling the electrical resistivity of deformation processed metal–metal composites. Acta Mater. 77, 151–161 (2014)

    Article  Google Scholar 

  • Tourani, H., Molazemhosseini, A., Khavandi, A., Mirdamadi, S., Shokrgozar, M.A., Mehrjoo, M.: Effects of fibers and nanoparticles reinforcements on the mechanical and biological properties of hybrid composite polyetheretherketone/short carbon fiber/Nano-SiO2. Polym. Compos. 34(11), 1961–1969 (2013)

    Article  Google Scholar 

  • Uddin, M.F., Sun, C.T.: Strength of unidirectional glass/epoxy composite with silica nanoparticle-enhanced matrix. Compos. Sci. Technol. 68(7), 1637–1643 (2008)

    Article  Google Scholar 

  • Wang, S., Qiu, J.: Enhancing thermal conductivity of glass fiber/polymer composites through carbon nanotubes incorporation. Compos. B Eng. 41(7), 533–536 (2010)

    Article  Google Scholar 

  • Wetherhold, R.C., Wang, J.: Difficulties in the theories for predicting transverse thermal conductivity of continuous fiber composites. J. Compos. Mater. 28(15), 1491–1498 (1994)

    Article  Google Scholar 

  • Zeng, T., Chen, G.: Phonon heat conduction in thin films: impacts of thermal boundary resistance and internal heat generation. Trans. Am. Soc. Mech. Eng. J. Heat Transf. 123(2), 340–347 (2001)

    Article  Google Scholar 

  • Zhang, S., Cao, X.Y., Ma, Y.M., Ke, Y.C., Zhang, J.K., Wang, F.S.: The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites. Express Polym. Lett. 5(7), 581–590 (2011)

    Article  Google Scholar 

  • Zweben, C.: Advances in high-performance thermal management materials: a review. J. Adv. Mater. 39(1), 3–10 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. J. Mahmoodi or R. Ansari.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoodi, M.J., Hassanzadeh-Aghdam, M.K. & Ansari, R. Overall thermal conductivity of unidirectional hybrid polymer nanocomposites containing SiO2 nanoparticles. Int J Mech Mater Des 15, 539–554 (2019). https://doi.org/10.1007/s10999-018-9428-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-018-9428-3

Keywords

Navigation