Skip to main content
Log in

Mathematical Modeling of Natural Convection in a Third-Grade Viscoelastic Micropolar Fluid from an Isothermal Inverted Cone

  • Research paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

A mathematical model is developed to investigate the nonlinear, isothermal steady-state free convection boundary layer flow in an incompressible third-grade viscoelastic micropolar fluid from a vertical isothermal cone. The non-Newtonian fluid exhibits both viscoelastic and micro-structural characteristics and is representative of certain polymers. The transformed conservation equations for mass, linear momentum, angular momentum and heat are solved numerically subject to realistic boundary conditions using the second-order accurate implicit finite-difference Keller-box method. The numerical code is validated with previous studies and also with a Nakamura tridiagonal method. Detailed interpretation of the computations is included. The present simulations are of interest in chemical engineering systems and solvent and low density polymer materials processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A :

Half angle of the cone

B :

Micropolar inertia density (material) parameter

C f :

Skin-friction coefficient

f :

Dimensionless stream function

Gr x :

Local Grashof number

g :

Acceleration due to gravity

j :

Microinertial density

K :

Vortex viscosity parameter

k :

Thermal conductivity of the fluid

N :

Angular velocity

Nu :

Local Nusselt number

Pr :

Prandtl number

r :

Local radius of the truncated cone

T :

Fluid temperature

u, v :

Dimensionless velocity components along the x- and y-directions, respectively

V :

Velocity vector

V w :

Arbitrary reference velocity

x :

Stream wise coordinate

y :

Transverse coordinate

\(\alpha\) :

Thermal diffusivity

\(\beta\) :

Coefficient of thermal expansion

\(\varepsilon_{1}\) :

First viscoelastic material fluid parameter

\(\varepsilon_{2}\) :

Second viscoelastic material fluid parameter

\(\beta_{3}\) :

Third-grade material parameter

\(\nu\) :

Kinematic viscosity

\(\rho\) :

Fluid density

\(\mu\) :

Newtonian dynamic viscosity

\(\eta\) :

Dimensionless radial coordinate

\(\theta\) :

Dimensionless temperature

\(\phi\) :

Third-grade dimensionless viscoelastic fluid parameter

\(\gamma^{*}\) :

Spin gradient viscosity

\(\xi\) :

Dimensionless tangential coordinate

\(\psi\) :

Dimensionless stream function

w:

Surface conditions on cone (wall)

∞:

Free stream conditions

References

  • Akyildiz FT, Bellout H, Vajravelu K (2004) Exact solutions of nonlinear differential equations arising in third grade fluid flows. Int J Non-Linear Mech 39:1571–1578

    Article  MathSciNet  Google Scholar 

  • Ali N, Zaman A, Anwar Bég O (2015) Numerical simulation of unsteady micropolar hemodynamics in a tapered catheterized artery with a combination of stenosis and aneurysm. Med Biol Eng Comput. https://doi.org/10.1007/s11517-015-1415-3

    Article  Google Scholar 

  • Ariman T, Turk MA, Sylvester ND (1974) Applications of micro-continuum fluid mechanics. Int J Eng Sci 12:273–293

    Article  Google Scholar 

  • Aziz A, Aziz T (2012) MHD flow of a third grade fluid in porous half space with plate suction or injection: an analytical approach. Appl Math Comput 218(21):10443–10453

    MathSciNet  MATH  Google Scholar 

  • Bég OA (2012) Numerical methods for multi-physical magnetohydrodynamics, Chapter 1. In: Ibragimov MJ, Anisimov MA (eds) New developments in hydrodynamics research. Nova Science, New York, pp 1–112

    Google Scholar 

  • Bég OA, Bég TA, Takhar HS, Raptis A (2004) Mathematical and numerical modeling of non-Newtonian thermo-hydrodynamic flow in non-Darcy porous media. Int J Fluid Mech Res 31:1–12

    Article  MathSciNet  Google Scholar 

  • Bég OA, Takhar HS, Bharagava R, Rawat S, Prasad VR (2008) Numerical study of heat transfer of a third grade viscoelastic fluid in non-Darcian porous media with thermophysical effects. Phys Scr 77:1–11

    Google Scholar 

  • Bég OA, Prasad VR, Vasu B, Bhaskar Reddy N, Li Q, Bhargava R (2011a) Free convection heat and mass transfer from an isothermal sphere to a micropolar regime with Soret/Dufour effects. Int J Heat Mass Transfer 54:9–18

    Article  Google Scholar 

  • Bég OA, Bhargava R, Rashidi MM (2011b) Numerical simulation in micropolar fluid dynamics. Lambert, Saarbrucken

    Google Scholar 

  • Bég OA, Prasad VR, Vasu B (2013) Numerical study of mixed bioconvection in porous media saturated with nanofluid containing oxytactic micro-organisms. J Mech Med Biol. https://doi.org/10.1142/S021951941350067X

    Article  Google Scholar 

  • Bég OA, Zueco J, Norouzi M, Davoodi M, Joneidi AA, Elsayed Assma F (2014) Network and Nakamura tridiagonal computational simulation of electrically-conducting biopolymer micro-morphic transport phenomena. Comput Biol Med 44:44–56

    Article  Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. Volume 1: fluid mechanics, vol 1, 2nd edn. Wiley, New York

    Google Scholar 

  • Chaube MK, Tripathi D, Anwar Bég O, Sharma S, Pandey VS (2015) Peristaltic creeping flow of power-law physiological fluids through a non-uniform channel with slip effect. Appl Bion Biomech. https://doi.org/10.1155/2015/152802

    Article  Google Scholar 

  • Eringen AC (1964) Simple microfluids. Int J Eng Sci 2:205–217

    Article  MathSciNet  Google Scholar 

  • Eringen AC (1966) Theory of micropolar fluids. J Math Mech 16:1–18

    MathSciNet  Google Scholar 

  • Eringen AC (1972) Theory of thermo-micropolar fluids. J Math Anal Appl 38:480–496

    Article  Google Scholar 

  • Fetecau C, Mahmood A, Jamil M (2010) Exact solutions for the flow of a viscoelastic fluid induced by a circular cylinder subject to a time dependent shear stress. Commun Nonlinear Sci Numer Simul 15(12):3931–3938

    Article  MathSciNet  Google Scholar 

  • Gaffar SA, Prasad VR, Beg OA, Khan MH, Venkatadri K (2018) Radiative and magnetohydrodynamics flow of third-grade viscoelastic fluid past an isothermal inverted cone in the presence of heat generation/absorption. J Braz Soc Mech Sci Eng 40:127. https://doi.org/10.1007/s40430-018-1049-0

    Article  Google Scholar 

  • Gorla RSR, Slaouti A, Takhar HS (1998) Free convection in micropolar fluids over a uniformly heated vertical plate. Int J Numer Method Heat Fluid Flow 8:504–518

    Article  Google Scholar 

  • Hayat T, Iqbal Z, Mustafa M, Hendi AA (2013a) Melting heat transfer in the stagnation-point flow of third grade fluid past a stretching sheet with viscous dissipation. Thermal Sci 17:865–875

    Article  Google Scholar 

  • Hayat T, Shafiq A, Alsaedi A, Awais M (2013b) MHD axisymmetric flow of third grade fluid between stretching sheets with heat transfer. Comput Fluids 86:103–108

    Article  MathSciNet  Google Scholar 

  • Hayat T, Shafiq A, Alsaedi A (2015) MHD axisymmetric flow of third grade fluid by a stretching cylinder. Alex Eng J 54:205–212

    Article  Google Scholar 

  • Hossain MA, Paul SC (2001) Free convection from a vertical permeable circular cone with non-uniform surface temperature. Acta Mech 151:103–114

    Article  Google Scholar 

  • Jamil M, Fetecau C, Imran M (2011) Unsteady helical flows of Oldroyd-B fluids. Commun Nonlinear Sci Numer Simul 16(3):1378–1386

    Article  MathSciNet  Google Scholar 

  • Kairi RR, Murthy PVSN (2011) Effect of viscous dissipation on natural convection heat and mass transfer from vertical cone in a non-Newtonian fluid saturated non-Darcy porous medium. Appl Math Comput 217:44–48

    MathSciNet  MATH  Google Scholar 

  • Keller HB (1978) Numerical methods in boundary-layer theory. Ann Rev Fluid Mech 10:417–433

    Article  MathSciNet  Google Scholar 

  • Latiff NA, Uddin MJ, Anwar Bég O, Ismail AIM (2015) Unsteady forced bioconvection slip flow of a micropolar nanofluid from a stretching/shrinking sheet. Proc IMECHE- Part N J Nanoeng Nanosyst. https://doi.org/10.1177/1740349915613817

    Article  Google Scholar 

  • Nadeem S, Saleem S (2015) Analytical study of third grade fluid over a rotating vertical cone in the presence of nanoparticles. Int J Heat Mass Transfer 85:1041–1048

    Article  Google Scholar 

  • Nakamura S (1994) Iterative finite difference schemes for similar and non-similar boundary layer equations. Adv Eng Softw 21:123–130

    Article  Google Scholar 

  • Nakamura S (1995) Applied numerical methods and software. Prentice-Hall New Jersey, USA

    Google Scholar 

  • Noghrehabadi A, Behseresht A, Ghalambaz M (2013) Natural convection flow of nanofluids over a vertical cone embedded in non-Darcy porous media. AIAA J Thermophys Heat Transfer 27:334–341

    Article  Google Scholar 

  • Prasad VR, Rao AS, Reddy NB, Vasu B, Bég OA (2013) Modelling laminar transport phenomena in a Casson rheological fluid from a horizontal circular cylinder with partial slip. Proc IMechE Part E J Process Mech Eng 227:309–326

    Article  Google Scholar 

  • Rochelle SG, Peddieson J (1980) Viscoelastic boundary-layer flows past wedges and cones. Int J Eng Sci 18:713–726

    Article  Google Scholar 

  • Sahoo B, Poncet S (2011) Flow and heat transfer of third grade fluid past an exponentially stretching sheet with partial slip boundary conditions. Int J Heat Mass Transfer 54(23–24):5010–5019

    Article  Google Scholar 

  • Tan WC, Masuoka T (2007) Stability analysis of a Maxwell fluid in a porous medium heated from below. Phys Lett A 360(3):454–460

    Article  Google Scholar 

  • Truesdell C, Noll W (1965) The non-linear field theories of mechanics, Handbuch der Physik, Band III/3. Springer, Berlin, pp 1–602

    Google Scholar 

  • Weng HC, Chang M-H, Chen C-K (2009) Stability of micropolar fluid flow between concentric rotating cylinders. J Fluid Mech 631:343–362

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abdul Gaffar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaffar, S.A., Bég, O.A. & Prasad, V.R. Mathematical Modeling of Natural Convection in a Third-Grade Viscoelastic Micropolar Fluid from an Isothermal Inverted Cone. Iran J Sci Technol Trans Mech Eng 44, 383–402 (2020). https://doi.org/10.1007/s40997-018-0262-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-018-0262-x

Keywords

Navigation