Skip to main content
Log in

SEM Gamma Prime Observation in a Thermal and Stress Analysis of a First-stage Rene’ 80H gas Turbine Blade: Numerical and Experimental Investigation

  • Research paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this paper, a 3D model of a gas turbine used in a single-stage turbojet engine, including stator and rotor, is considered for structural and thermal analysis. A modified conjugate heat transfer (CHT) method is used in a developed computer code to predict heat flux and the coupled non-adiabatic external flow field and temperature field on the blades. The thermo-elastic behavior of one blade made of Rene’ 80H is studied by the finite element method, where the temperature distribution, and the thermal and centrifugal stresses are calculated. Thermal stresses are studied for the materials with temperature-dependent properties and are compared to those with constant material parameters, E (T), α (T) and K (T). To have a complete CHT procedure, a unique consideration is utilized to link the boundary conditions. To verify the CHT method and temperature distribution on the blade, an experimental study is carried out during a metallographic study in the laboratory. A scanning electron microscopy is used to observe microstructures in different sections of the target blade. The precipitation of the blade carbides and grain type and size characterization are discussed to verify the results. The results indicate (through the size of γ′ and MC type) an increased temperature in different levels of a blade from root to tip. The alloy deterioration mostly occurs in the critical areas where blade’s mechanical properties decrease considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(\alpha^{*}\) :

Coefficient of turbulent viscosity

\(\alpha (1/{\text{K}})\) :

Coefficient of thermal expansion

\(e\) :

Specific total energy

\(F_{1}\) :

Mixing function in Menter’s kω models

\(\tilde{G}_{\text{k}}\) :

Flux vector (Cartesian coordinate)

\(G_{\text{k}}\) :

Generation of turbulent kinetic energy due to mean velocity gradients

\(E({\text{N}}/{\text{m}}^{2} )\) :

Young’s modulus

F, G :

Flux vectors (body-fitted coordinate)

\(h({\text{W}}/{\text{m}}^{2} \;{\text{K}})\) :

Coefficient of heat transfer

\(h_{\text{e}}\) :

Estimated convective heat transfer

J :

Cell volume

\(K({\text{W}}/{\text{m}}\,{\text{K}})\) :

Thermal conductivity

\(q({\text{W}}/{\text{m}}^{2} )\) :

Heat flux

\(\$ (N/m^{2} )\) :

Stress tensor

\(S_{\text{k}} ,S_{\omega }\) :

User-defined source terms

T (K):

Temperature

u :

Displacement

U :

Vector in Cartesian coordinate system

\(u_{i} ({\text{m}}/{\text{s}})\) :

Velocity components

y + :

Non-dimensional wall coordinate

\(c_{p} ({\text{J}}/{\text{kg}}\,{\text{K}})\) :

Specific heat

ρ(kg/m3):

Density

\(\delta\) :

Unit tensor

\(\tau_{ij} ({\text{N}}/{\text{mm}}^{2} )\) :

Components of shear stress tensor

\(\sigma_{\text{k}} ,\sigma_{\omega }\) :

Turbulent Prandtl number for k and ω

\(\mu ({\text{Pa}}\,{\text{s}})\) :

Dynamic viscosity

\(\mu_{\text{t}} ({\text{Pa}}\,{\text{s}})\) :

Turbulent viscosity

\(\beta^{*}\) :

Model coefficient

\(\omega\) :

Second scale variable in the kω models

\(\upsilon\) :

Poisson’s ratio

F:

Fluid

i:

Index

s:

Solid

t:

Turbulent

w:

Wall

References

  • Allen JM (1982) Effect of temperature dependent mechanical properties on thermal stress in a cooled gas turbine blade. ASME J Eng Power 104:349–353

    Article  Google Scholar 

  • Almroth P, Hasselqvist M, Sjöström S, Simonsson K (2002) Modeling of the high temperature behaviour of IN792 in gas turbine hot parts. Comput Mater Sci 25(3):305–315

    Article  Google Scholar 

  • Amaral S, Verstraete T, Van den Braembussche R, Arts T (2010) Design and optimization of the internal cooling channels of a high pressure turbine blade—part I: methodology. ASME J Turbines 132:021013-1

    Google Scholar 

  • Andani MT, Pourgharibshahi H, Ramezani Z, Zargarzadeh H (2018) Controller design for voltage-source converter using LQG/LTR. In: Texas power and energy conference (TPEC), 2018 IEEE. IEEE, pp 1–6

  • Atefi GA, Jafari MM, Soleymani A, Khalesi J (2010) A coupled algorithm for thermal analysis in turbine blade. In: 13th annual & 2nd international fluid dynamics conference

  • Atefi GA, Jafari MM, Soleymani A, Khalesi J (2010) Analysis of flow and temperature field on turbine blade with temperature dependent heat conduction coefficient. In: 9th Iranian aerospace society conference, Azad University of Science and Research

  • Atefi GA, Jafari MM, Khalesi J (2010) The thermoelastic analysis of a gas turbine blade in 2-D and temperature dependent mechanical properties. In: The 9th Iranian aerospace society conference. Tehran, Iran, Feb 08-10

  • Atefi GA, Jafari MM, Khalesi J, Soleymani A (2012) A new conjugate heat transfer method to analyse a 3D steam cooled gas turbine blade with temperature-dependent material properties. In: Proceedings of IMechE vol 226 part C: journal of mechanical engineering science

  • Behnampour A, Akbari OA, Safaei MR, Ghavami M, Marzban A, Shabani GAS, Zarringhalam M, Mashayekhi R (2017) Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs. Physica E 91:15–31

    Article  Google Scholar 

  • Chung H, Sohn HS, Park JS, Kim KM, Cho HH (2017) Thermo-structural analysis of cracks on gas turbine vane segment having multiple airfoils. Energy 118:1275–1285

    Article  Google Scholar 

  • Cuffaro V, Curà F, Sesana R (2014) Advanced life assessment methods for gas turbine engine components. Procedia Eng 74:129–134

    Article  Google Scholar 

  • Dandkar DP, Martin AG (1990) Temperature dependence of flexural and torsional elastic constants of two nickel-based superalloys. Int J Mater Sci 25:3321–3326

    Article  Google Scholar 

  • Dwarapureddy AK (2006) study of particle growth and breakdown in single size gamma prime distribution and high temperature creep in IN738LC nickel super-alloy. Dissertation, Louisiana State University

  • Ellison KA, Daleo JA, Hussain K (2004) A new method of metal temperature estimation for service-run blades and vanes. In: 10th International symposium on superalloys. Champion, PA, pp 19–23

  • Fadl M, Stein P, He L (2018) Full conjugate heat transfer modelling for steam turbines in transient operations. Int J Therm Sci 124:240–250

    Article  Google Scholar 

  • Ganine V, Javiya U, Hills N, Chew J (2012) Coupled fluid–structure transient thermal analysis of a gas turbine internal air system with multiple cavities. J Eng Gas Turbines Power 134(10):102508

    Article  Google Scholar 

  • Ghoreyshi SM, Schobeiri MT (2017) Numerical simulation of the multistage ultra-high efficiency gas turbine engine, UHEGT. In: ASME Turbo Expo 2017: turbomachinery technical conference and exposition. American Society of Mechanical Engineers, p V003T06A034

  • Gravndyan Q, Akbari OA, Toghraie D, Marzban A, Mashayekhi R, Karimi R, Pourfattah F (2017) The effect of aspect ratios of rib on the heat transfer and laminar water/TiO2 nanofluid flow in a two-dimensional rectangular microchannel. J Mol Liq 236:254–265

    Article  Google Scholar 

  • Hafezisefat P, Esfahany MN, Jafari M (2017) An experimental and numerical study of heat transfer in jacketed vessels by SiO2 nanofluid. Heat Mass Transf 53(7):2395–2405

    Article  Google Scholar 

  • Hermosilla U, Karunaratne MSA, Jones IA, Hyde TH, Thomson RC (2009) Modelling the high temperature behaviour of TBCs using sequentially coupled microstructural–mechanical FE analyses. Mater Sci Eng, A 513:302–310

    Article  Google Scholar 

  • Hwang S, Son C, Seo D, Rhee DH, Cha B (2016) Comparative study on steady and unsteady conjugate heat transfer analysis of a high pressure turbine blade. Appl Therm Eng 99:765–775

    Article  Google Scholar 

  • Jafari MM (2013) Thermoelastic analysis of gas turbine blades with temperature dependent material properties. Dissertation, Iran University of Science and Technology

  • Jafari MM, Atefi GA, Khalesi J (2010) Advances in nonlinear stress analysis of a steam cooled gas turbine blade. Latin Am Appl Res 42:167–175

    Google Scholar 

  • Jafari M, Afshin H, Farhanieh B, Bozorgasareh H (2015) Numerical aerodynamic evaluation and noise investigation of a bladeless fan. J Appl Fluid Mech 8(1):133–142

    Google Scholar 

  • Jafari M, Afshin H, Farhanieh B, Bozorgasareh H (2016) Experimental and numerical investigation of a 60 cm diameter bladeless fan. J Appl Fluid Mech 9(2):935–944

    Article  Google Scholar 

  • Khaleghi H, Dehkordi MAS, Tousi AM (2016) Role of tip injection in desensitizing the compressor to the tip clearance size. Aerosp Sci Technol 52:10–17

    Article  Google Scholar 

  • Kipngetich KD, Feng C, Gao S (2016) Reflection error correction of gas turbine blade temperature. Infrared Phys Technol 75:153–159

    Article  Google Scholar 

  • Koster A, Alam AM, Rémy L (2002) A physical-base model for life prediction of single crystal turbine blades under creep-fatigue loading and thermal transient conditions. In: European Structural Integrity Society, vol 29. Elsevier, pp 203–212

  • Li K, Wright J, Modaresahmadi S, Som D, Williams W, Bird JZ (2017) Designing the first stage of a series connected multistage coaxial magnetic gearbox for a wind turbine demonstrator. In: Energy conversion congress and exposition (ECCE), 2017 IEEE. IEEE, pp 1247–1254

  • Liu GR, Quek SS (2003) The finite element method: a practical course. Elsevier, Oxford

    MATH  Google Scholar 

  • Marzbanrad J, Hoseinpour A (2017) Structural optimization of MacPherson control arm under fatigue loading. Tehnički vjesnik 24(3):917–924

    Google Scholar 

  • Mazur Z, Hernández-Rossette A, García-Illescas R, Luna-Ramírez A (2006) Analysis of conjugate heat transfer of a gas turbine first stage nozzle. Appl Therm Eng 26(16):1796–1806

    Article  Google Scholar 

  • Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32(8):1598–1605

    Article  Google Scholar 

  • Mills KC, Youssef YM, Li Z (2006) The effect of aluminium content on thermophysical properties of Ni-based superalloys. J Int 46:50–57

    Google Scholar 

  • Mortazavi F, Palazzolo A (2017) Prediction of rotordynamic performance of smooth stator-grooved rotor liquid annular seals utilizing CFD. ASME J Vib Acoust. https://doi.org/10.1115/1.4038437

    Article  Google Scholar 

  • Moskalenko AB, Kozhevnikov AI (2016) Estimation of gas turbine blades cooling efficiency. Procedia Eng 150:61–67

    Article  Google Scholar 

  • Nikparto A, Schobeiri MT (2017) Experimental investigation of film-cooling effectiveness of a highly loaded turbine blade under steady and periodic unsteady flow conditions. J Heat Transf 139(7):072201

    Article  Google Scholar 

  • Nowak G, Wróblewski W (2011) Optimization of blade cooling system with use of conjugate heat transfer approach. Int J Therm Sci 50(9):1770–1781

    Article  Google Scholar 

  • Pourseif T, Andani MT, Ramezani Z, Pourgholi M (2017) Model reference adaptive control for robot tracking problem: design & performance analysis. Int J Control Sci Eng 7(1):18–23

    Google Scholar 

  • Rahbari I, Mortazavi F, Rahimian MH (2014) High order numerical simulation of non-Fourier heat conduction: an application of numerical laplace transform inversion. Int Commun Heat Mass Transf 51:51–58

    Article  Google Scholar 

  • Regis V (1996) Life improvement in high temperature components for advanced power engineering. Int J Press Vessels Pip 66(1–3):161–170

    Article  Google Scholar 

  • Reyhani MR, Alizadeh M, Fathi A, Khaledi H (2013) Turbine blade temperature calculation and life estimation—a sensitivity analysis. Propuls Power Res 2(2):148–161

    Article  Google Scholar 

  • Rouholamini A, Pourgharibshahi H, Fadaeinedjad R, Abdolzadeh M (2016) Temperature of a photovoltaic module under the influence of different environmental conditions—experimental investigation. Int J Ambient Energy 37(3):266–272

    Article  Google Scholar 

  • Sadowski T, Golewski P (2011) Multidisciplinary analysis of the operational temperature increase of turbine blades in combustion engines by application of the ceramic thermal barrier coatings (TBC). Comput Mater Sci 50(4):1326–1335

    Article  Google Scholar 

  • Safari J, Nategh S (2006) On the heat treatment of Rene-80 nickel-base superalloy. J Mater Process Technol 176(1–3):240–250

    Article  Google Scholar 

  • Sajjadi SA, Nategh S, Roderick IL (2002) Study of microstructure and mechanical properties of high performance Ni-base superalloy GTD-111. Int J Mater Sci Eng A325:484–489

    Article  Google Scholar 

  • Schobeiri MT, Ghoreyshi SM (2016) The ultrahigh efficiency gas turbine engine with stator internal combustion. J Eng Gas Turbines Power 138(2):021506

    Article  Google Scholar 

  • Schobeiri MT, Nikparto A (2014) A comparative numerical study of aerodynamics and heat transfer on transitional flow around a highly loaded turbine blade with flow separation using rans, urans and les. ASME Paper No. GT2014-25828

  • Som D, Li K, Kadel J, Wright J, Modaresahmadi S, Bird JZ, William W (2017) Analysis and testing of a coaxial magnetic gearbox with flux concentration halbach rotors. IEEE Trans Magn 53(11):1–6

    Article  Google Scholar 

  • Stephen M, Donachie J (2002) Superalloys, a technical guide, 2nd edn. ASM International, Materials Park

    Google Scholar 

  • Verstraete T, Alsalihi Z, Van den Braembussche RA (2007) Numerical study of the heat transfer in micro gas turbines. ASME J Turbines 129:835–841

    Article  Google Scholar 

  • Yoshioka Y, Okabe N, Okamura T, Saito D, Fujiama K, Kashiwaya H (1996) Service temperature estimation for heavy duty gas turbine buckets based on microstructure and change. In: Kissinger RD (ed) Superalloys 1996. The minerals, metals and materials society, pp 173–179

Download references

Acknowledgement

The authors would like to express their sincere gratitude to the University of Science and Technology, Iran, for providing Metrology and Material laboratory facilities on- and off-campus to perform experimental testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Khalesi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalesi, J., Modaresahmadi, S. & Atefi, G. SEM Gamma Prime Observation in a Thermal and Stress Analysis of a First-stage Rene’ 80H gas Turbine Blade: Numerical and Experimental Investigation. Iran J Sci Technol Trans Mech Eng 43, 613–626 (2019). https://doi.org/10.1007/s40997-018-0235-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-018-0235-0

Keywords

Navigation